// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // For reference check out: // https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling // // Note that we only have partial C++11 support yet. #include "absl/debugging/internal/demangle.h" #include #include #include namespace absl { namespace debugging_internal { typedef struct { const char *abbrev; const char *real_name; // Number of arguments in context, or 0 if disallowed. int arity; } AbbrevPair; // List of operators from Itanium C++ ABI. static const AbbrevPair kOperatorList[] = { // New has special syntax (not currently supported). {"nw", "new", 0}, {"na", "new[]", 0}, // Works except that the 'gs' prefix is not supported. {"dl", "delete", 1}, {"da", "delete[]", 1}, {"ps", "+", 1}, // "positive" {"ng", "-", 1}, // "negative" {"ad", "&", 1}, // "address-of" {"de", "*", 1}, // "dereference" {"co", "~", 1}, {"pl", "+", 2}, {"mi", "-", 2}, {"ml", "*", 2}, {"dv", "/", 2}, {"rm", "%", 2}, {"an", "&", 2}, {"or", "|", 2}, {"eo", "^", 2}, {"aS", "=", 2}, {"pL", "+=", 2}, {"mI", "-=", 2}, {"mL", "*=", 2}, {"dV", "/=", 2}, {"rM", "%=", 2}, {"aN", "&=", 2}, {"oR", "|=", 2}, {"eO", "^=", 2}, {"ls", "<<", 2}, {"rs", ">>", 2}, {"lS", "<<=", 2}, {"rS", ">>=", 2}, {"eq", "==", 2}, {"ne", "!=", 2}, {"lt", "<", 2}, {"gt", ">", 2}, {"le", "<=", 2}, {"ge", ">=", 2}, {"nt", "!", 1}, {"aa", "&&", 2}, {"oo", "||", 2}, {"pp", "++", 1}, {"mm", "--", 1}, {"cm", ",", 2}, {"pm", "->*", 2}, {"pt", "->", 0}, // Special syntax {"cl", "()", 0}, // Special syntax {"ix", "[]", 2}, {"qu", "?", 3}, {"st", "sizeof", 0}, // Special syntax {"sz", "sizeof", 1}, // Not a real operator name, but used in expressions. {nullptr, nullptr, 0}, }; // List of builtin types from Itanium C++ ABI. // // Invariant: only one- or two-character type abbreviations here. static const AbbrevPair kBuiltinTypeList[] = { {"v", "void", 0}, {"w", "wchar_t", 0}, {"b", "bool", 0}, {"c", "char", 0}, {"a", "signed char", 0}, {"h", "unsigned char", 0}, {"s", "short", 0}, {"t", "unsigned short", 0}, {"i", "int", 0}, {"j", "unsigned int", 0}, {"l", "long", 0}, {"m", "unsigned long", 0}, {"x", "long long", 0}, {"y", "unsigned long long", 0}, {"n", "__int128", 0}, {"o", "unsigned __int128", 0}, {"f", "float", 0}, {"d", "double", 0}, {"e", "long double", 0}, {"g", "__float128", 0}, {"z", "ellipsis", 0}, {"De", "decimal128", 0}, // IEEE 754r decimal floating point (128 bits) {"Dd", "decimal64", 0}, // IEEE 754r decimal floating point (64 bits) {"Dc", "decltype(auto)", 0}, {"Da", "auto", 0}, {"Dn", "std::nullptr_t", 0}, // i.e., decltype(nullptr) {"Df", "decimal32", 0}, // IEEE 754r decimal floating point (32 bits) {"Di", "char32_t", 0}, {"Ds", "char16_t", 0}, {"Dh", "float16", 0}, // IEEE 754r half-precision float (16 bits) {nullptr, nullptr, 0}, }; // List of substitutions Itanium C++ ABI. static const AbbrevPair kSubstitutionList[] = { {"St", "", 0}, {"Sa", "allocator", 0}, {"Sb", "basic_string", 0}, // std::basic_string,std::allocator > {"Ss", "string", 0}, // std::basic_istream > {"Si", "istream", 0}, // std::basic_ostream > {"So", "ostream", 0}, // std::basic_iostream > {"Sd", "iostream", 0}, {nullptr, nullptr, 0}, }; // State needed for demangling. This struct is copied in almost every stack // frame, so every byte counts. typedef struct { int mangled_idx; // Cursor of mangled name. int out_cur_idx; // Cursor of output std::string. int prev_name_idx; // For constructors/destructors. signed int prev_name_length : 16; // For constructors/destructors. signed int nest_level : 15; // For nested names. unsigned int append : 1; // Append flag. // Note: for some reason MSVC can't pack "bool append : 1" into the same int // with the above two fields, so we use an int instead. Amusingly it can pack // "signed bool" as expected, but relying on that to continue to be a legal // type seems ill-advised (as it's illegal in at least clang). } ParseState; static_assert(sizeof(ParseState) == 4 * sizeof(int), "unexpected size of ParseState"); // One-off state for demangling that's not subject to backtracking -- either // constant data, data that's intentionally immune to backtracking (steps), or // data that would never be changed by backtracking anyway (recursion_depth). // // Only one copy of this exists for each call to Demangle, so the size of this // struct is nearly inconsequential. typedef struct { const char *mangled_begin; // Beginning of input std::string. char *out; // Beginning of output std::string. int out_end_idx; // One past last allowed output character. int recursion_depth; // For stack exhaustion prevention. int steps; // Cap how much work we'll do, regardless of depth. ParseState parse_state; // Backtrackable state copied for most frames. } State; namespace { // Prevent deep recursion / stack exhaustion. // Also prevent unbounded handling of complex inputs. class ComplexityGuard { public: explicit ComplexityGuard(State *state) : state_(state) { ++state->recursion_depth; ++state->steps; } ~ComplexityGuard() { --state_->recursion_depth; } // 256 levels of recursion seems like a reasonable upper limit on depth. // 128 is not enough to demagle synthetic tests from demangle_unittest.txt: // "_ZaaZZZZ..." and "_ZaaZcvZcvZ..." static constexpr int kRecursionDepthLimit = 256; // We're trying to pick a charitable upper-limit on how many parse steps are // necessary to handle something that a human could actually make use of. // This is mostly in place as a bound on how much work we'll do if we are // asked to demangle an mangled name from an untrusted source, so it should be // much larger than the largest expected symbol, but much smaller than the // amount of work we can do in, e.g., a second. // // Some real-world symbols from an arbitrary binary started failing between // 2^12 and 2^13, so we multiply the latter by an extra factor of 16 to set // the limit. // // Spending one second on 2^17 parse steps would require each step to take // 7.6us, or ~30000 clock cycles, so it's safe to say this can be done in // under a second. static constexpr int kParseStepsLimit = 1 << 17; bool IsTooComplex() const { return state_->recursion_depth > kRecursionDepthLimit || state_->steps > kParseStepsLimit; } private: State *state_; }; } // namespace // We don't use strlen() in libc since it's not guaranteed to be async // signal safe. static size_t StrLen(const char *str) { size_t len = 0; while (*str != '\0') { ++str; ++len; } return len; } // Returns true if "str" has at least "n" characters remaining. static bool AtLeastNumCharsRemaining(const char *str, int n) { for (int i = 0; i < n; ++i) { if (str[i] == '\0') { return false; } } return true; } // Returns true if "str" has "prefix" as a prefix. static bool StrPrefix(const char *str, const char *prefix) { size_t i = 0; while (str[i] != '\0' && prefix[i] != '\0' && str[i] == prefix[i]) { ++i; } return prefix[i] == '\0'; // Consumed everything in "prefix". } static void InitState(State *state, const char *mangled, char *out, int out_size) { state->mangled_begin = mangled; state->out = out; state->out_end_idx = out_size; state->recursion_depth = 0; state->steps = 0; state->parse_state.mangled_idx = 0; state->parse_state.out_cur_idx = 0; state->parse_state.prev_name_idx = 0; state->parse_state.prev_name_length = -1; state->parse_state.nest_level = -1; state->parse_state.append = true; } static inline const char *RemainingInput(State *state) { return &state->mangled_begin[state->parse_state.mangled_idx]; } // Returns true and advances "mangled_idx" if we find "one_char_token" // at "mangled_idx" position. It is assumed that "one_char_token" does // not contain '\0'. static bool ParseOneCharToken(State *state, const char one_char_token) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (RemainingInput(state)[0] == one_char_token) { ++state->parse_state.mangled_idx; return true; } return false; } // Returns true and advances "mangled_cur" if we find "two_char_token" // at "mangled_cur" position. It is assumed that "two_char_token" does // not contain '\0'. static bool ParseTwoCharToken(State *state, const char *two_char_token) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (RemainingInput(state)[0] == two_char_token[0] && RemainingInput(state)[1] == two_char_token[1]) { state->parse_state.mangled_idx += 2; return true; } return false; } // Returns true and advances "mangled_cur" if we find any character in // "char_class" at "mangled_cur" position. static bool ParseCharClass(State *state, const char *char_class) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (RemainingInput(state)[0] == '\0') { return false; } const char *p = char_class; for (; *p != '\0'; ++p) { if (RemainingInput(state)[0] == *p) { ++state->parse_state.mangled_idx; return true; } } return false; } static bool ParseDigit(State *state, int *digit) { char c = RemainingInput(state)[0]; if (ParseCharClass(state, "0123456789")) { if (digit != nullptr) { *digit = c - '0'; } return true; } return false; } // This function is used for handling an optional non-terminal. static bool Optional(bool /*status*/) { return true; } // This function is used for handling + syntax. typedef bool (*ParseFunc)(State *); static bool OneOrMore(ParseFunc parse_func, State *state) { if (parse_func(state)) { while (parse_func(state)) { } return true; } return false; } // This function is used for handling * syntax. The function // always returns true and must be followed by a termination token or a // terminating sequence not handled by parse_func (e.g. // ParseOneCharToken(state, 'E')). static bool ZeroOrMore(ParseFunc parse_func, State *state) { while (parse_func(state)) { } return true; } // Append "str" at "out_cur_idx". If there is an overflow, out_cur_idx is // set to out_end_idx+1. The output string is ensured to // always terminate with '\0' as long as there is no overflow. static void Append(State *state, const char *const str, const int length) { for (int i = 0; i < length; ++i) { if (state->parse_state.out_cur_idx + 1 < state->out_end_idx) { // +1 for '\0' state->out[state->parse_state.out_cur_idx++] = str[i]; } else { // signal overflow state->parse_state.out_cur_idx = state->out_end_idx + 1; break; } } if (state->parse_state.out_cur_idx < state->out_end_idx) { state->out[state->parse_state.out_cur_idx] = '\0'; // Terminate it with '\0' } } // We don't use equivalents in libc to avoid locale issues. static bool IsLower(char c) { return c >= 'a' && c <= 'z'; } static bool IsAlpha(char c) { return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'); } static bool IsDigit(char c) { return c >= '0' && c <= '9'; } // Returns true if "str" is a function clone suffix. These suffixes are used // by GCC 4.5.x and later versions (and our locally-modified version of GCC // 4.4.x) to indicate functions which have been cloned during optimization. // We treat any sequence (.+.+)+ as a function clone suffix. static bool IsFunctionCloneSuffix(const char *str) { size_t i = 0; while (str[i] != '\0') { // Consume a single .+.+ sequence. if (str[i] != '.' || !IsAlpha(str[i + 1])) { return false; } i += 2; while (IsAlpha(str[i])) { ++i; } if (str[i] != '.' || !IsDigit(str[i + 1])) { return false; } i += 2; while (IsDigit(str[i])) { ++i; } } return true; // Consumed everything in "str". } static bool EndsWith(State *state, const char chr) { return state->parse_state.out_cur_idx > 0 && chr == state->out[state->parse_state.out_cur_idx - 1]; } // Append "str" with some tweaks, iff "append" state is true. static void MaybeAppendWithLength(State *state, const char *const str, const int length) { if (state->parse_state.append && length > 0) { // Append a space if the output buffer ends with '<' and "str" // starts with '<' to avoid <<<. if (str[0] == '<' && EndsWith(state, '<')) { Append(state, " ", 1); } // Remember the last identifier name for ctors/dtors. if (IsAlpha(str[0]) || str[0] == '_') { state->parse_state.prev_name_idx = state->parse_state.out_cur_idx; state->parse_state.prev_name_length = length; } Append(state, str, length); } } // Appends a positive decimal number to the output if appending is enabled. static bool MaybeAppendDecimal(State *state, unsigned int val) { // Max {32-64}-bit unsigned int is 20 digits. constexpr size_t kMaxLength = 20; char buf[kMaxLength]; // We can't use itoa or sprintf as neither is specified to be // async-signal-safe. if (state->parse_state.append) { // We can't have a one-before-the-beginning pointer, so instead start with // one-past-the-end and manipulate one character before the pointer. char *p = &buf[kMaxLength]; do { // val=0 is the only input that should write a leading zero digit. *--p = (val % 10) + '0'; val /= 10; } while (p > buf && val != 0); // 'p' landed on the last character we set. How convenient. Append(state, p, kMaxLength - (p - buf)); } return true; } // A convenient wrapper around MaybeAppendWithLength(). // Returns true so that it can be placed in "if" conditions. static bool MaybeAppend(State *state, const char *const str) { if (state->parse_state.append) { int length = StrLen(str); MaybeAppendWithLength(state, str, length); } return true; } // This function is used for handling nested names. static bool EnterNestedName(State *state) { state->parse_state.nest_level = 0; return true; } // This function is used for handling nested names. static bool LeaveNestedName(State *state, int16_t prev_value) { state->parse_state.nest_level = prev_value; return true; } // Disable the append mode not to print function parameters, etc. static bool DisableAppend(State *state) { state->parse_state.append = false; return true; } // Restore the append mode to the previous state. static bool RestoreAppend(State *state, bool prev_value) { state->parse_state.append = prev_value; return true; } // Increase the nest level for nested names. static void MaybeIncreaseNestLevel(State *state) { if (state->parse_state.nest_level > -1) { ++state->parse_state.nest_level; } } // Appends :: for nested names if necessary. static void MaybeAppendSeparator(State *state) { if (state->parse_state.nest_level >= 1) { MaybeAppend(state, "::"); } } // Cancel the last separator if necessary. static void MaybeCancelLastSeparator(State *state) { if (state->parse_state.nest_level >= 1 && state->parse_state.append && state->parse_state.out_cur_idx >= 2) { state->parse_state.out_cur_idx -= 2; state->out[state->parse_state.out_cur_idx] = '\0'; } } // Returns true if the identifier of the given length pointed to by // "mangled_cur" is anonymous namespace. static bool IdentifierIsAnonymousNamespace(State *state, int length) { // Returns true if "anon_prefix" is a proper prefix of "mangled_cur". static const char anon_prefix[] = "_GLOBAL__N_"; return (length > static_cast(sizeof(anon_prefix) - 1) && StrPrefix(RemainingInput(state), anon_prefix)); } // Forward declarations of our parsing functions. static bool ParseMangledName(State *state); static bool ParseEncoding(State *state); static bool ParseName(State *state); static bool ParseUnscopedName(State *state); static bool ParseNestedName(State *state); static bool ParsePrefix(State *state); static bool ParseUnqualifiedName(State *state); static bool ParseSourceName(State *state); static bool ParseLocalSourceName(State *state); static bool ParseUnnamedTypeName(State *state); static bool ParseNumber(State *state, int *number_out); static bool ParseFloatNumber(State *state); static bool ParseSeqId(State *state); static bool ParseIdentifier(State *state, int length); static bool ParseOperatorName(State *state, int *arity); static bool ParseSpecialName(State *state); static bool ParseCallOffset(State *state); static bool ParseNVOffset(State *state); static bool ParseVOffset(State *state); static bool ParseCtorDtorName(State *state); static bool ParseDecltype(State *state); static bool ParseType(State *state); static bool ParseCVQualifiers(State *state); static bool ParseBuiltinType(State *state); static bool ParseFunctionType(State *state); static bool ParseBareFunctionType(State *state); static bool ParseClassEnumType(State *state); static bool ParseArrayType(State *state); static bool ParsePointerToMemberType(State *state); static bool ParseTemplateParam(State *state); static bool ParseTemplateTemplateParam(State *state); static bool ParseTemplateArgs(State *state); static bool ParseTemplateArg(State *state); static bool ParseBaseUnresolvedName(State *state); static bool ParseUnresolvedName(State *state); static bool ParseExpression(State *state); static bool ParseExprPrimary(State *state); static bool ParseExprCastValue(State *state); static bool ParseLocalName(State *state); static bool ParseLocalNameSuffix(State *state); static bool ParseDiscriminator(State *state); static bool ParseSubstitution(State *state, bool accept_std); // Implementation note: the following code is a straightforward // translation of the Itanium C++ ABI defined in BNF with a couple of // exceptions. // // - Support GNU extensions not defined in the Itanium C++ ABI // - and are combined to avoid infinite loop // - Reorder patterns to shorten the code // - Reorder patterns to give greedier functions precedence // We'll mark "Less greedy than" for these cases in the code // // Each parsing function changes the parse state and returns true on // success, or returns false and doesn't change the parse state (note: // the parse-steps counter increases regardless of success or failure). // To ensure that the parse state isn't changed in the latter case, we // save the original state before we call multiple parsing functions // consecutively with &&, and restore it if unsuccessful. See // ParseEncoding() as an example of this convention. We follow the // convention throughout the code. // // Originally we tried to do demangling without following the full ABI // syntax but it turned out we needed to follow the full syntax to // parse complicated cases like nested template arguments. Note that // implementing a full-fledged demangler isn't trivial (libiberty's // cp-demangle.c has +4300 lines). // // Note that (foo) in <(foo) ...> is a modifier to be ignored. // // Reference: // - Itanium C++ ABI // // ::= _Z static bool ParseMangledName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; return ParseTwoCharToken(state, "_Z") && ParseEncoding(state); } // ::= <(function) name> // ::= <(data) name> // ::= static bool ParseEncoding(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; // Implementing the first two productions together as // [] avoids exponential blowup of backtracking. // // Since Optional(...) can't fail, there's no need to copy the state for // backtracking. if (ParseName(state) && Optional(ParseBareFunctionType(state))) { return true; } if (ParseSpecialName(state)) { return true; } return false; } // ::= // ::= // ::= // ::= static bool ParseName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (ParseNestedName(state) || ParseLocalName(state)) { return true; } // We reorganize the productions to avoid re-parsing unscoped names. // - Inline productions: // ::= // ::= // ::= // - Merge the two productions that start with unscoped-name: // ::= [] ParseState copy = state->parse_state; // "std<...>" isn't a valid name. if (ParseSubstitution(state, /*accept_std=*/false) && ParseTemplateArgs(state)) { return true; } state->parse_state = copy; // Note there's no need to restore state after this since only the first // subparser can fail. return ParseUnscopedName(state) && Optional(ParseTemplateArgs(state)); } // ::= // ::= St static bool ParseUnscopedName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (ParseUnqualifiedName(state)) { return true; } ParseState copy = state->parse_state; if (ParseTwoCharToken(state, "St") && MaybeAppend(state, "std::") && ParseUnqualifiedName(state)) { return true; } state->parse_state = copy; return false; } // ::= R // lvalue method reference qualifier // ::= O // rvalue method reference qualifier static inline bool ParseRefQualifier(State *state) { return ParseCharClass(state, "OR"); } // ::= N [] [] // E // ::= N [] [] // E static bool ParseNestedName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'N') && EnterNestedName(state) && Optional(ParseCVQualifiers(state)) && Optional(ParseRefQualifier(state)) && ParsePrefix(state) && LeaveNestedName(state, copy.nest_level) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; return false; } // This part is tricky. If we literally translate them to code, we'll // end up infinite loop. Hence we merge them to avoid the case. // // ::= // ::= // ::= // ::= // ::= # empty // ::= <(template) unqualified-name> // ::= // ::= static bool ParsePrefix(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; bool has_something = false; while (true) { MaybeAppendSeparator(state); if (ParseTemplateParam(state) || ParseSubstitution(state, /*accept_std=*/true) || ParseUnscopedName(state) || (ParseOneCharToken(state, 'M') && ParseUnnamedTypeName(state))) { has_something = true; MaybeIncreaseNestLevel(state); continue; } MaybeCancelLastSeparator(state); if (has_something && ParseTemplateArgs(state)) { return ParsePrefix(state); } else { break; } } return true; } // ::= // ::= // ::= // ::= // GCC extension; see below. // ::= static bool ParseUnqualifiedName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; return (ParseOperatorName(state, nullptr) || ParseCtorDtorName(state) || ParseSourceName(state) || ParseLocalSourceName(state) || ParseUnnamedTypeName(state)); } // ::= static bool ParseSourceName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; int length = -1; if (ParseNumber(state, &length) && ParseIdentifier(state, length)) { return true; } state->parse_state = copy; return false; } // ::= L [] // // References: // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=31775 // https://gcc.gnu.org/viewcvs?view=rev&revision=124467 static bool ParseLocalSourceName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'L') && ParseSourceName(state) && Optional(ParseDiscriminator(state))) { return true; } state->parse_state = copy; return false; } // ::= Ut [<(nonnegative) number>] _ // ::= // ::= Ul E [<(nonnegative) number>] _ // ::= <(parameter) type>+ static bool ParseUnnamedTypeName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; // Type's 1-based index n is encoded as { "", n == 1; itoa(n-2), otherwise }. // Optionally parse the encoded value into 'which' and add 2 to get the index. int which = -1; // Unnamed type local to function or class. if (ParseTwoCharToken(state, "Ut") && Optional(ParseNumber(state, &which)) && which <= std::numeric_limits::max() - 2 && // Don't overflow. ParseOneCharToken(state, '_')) { MaybeAppend(state, "{unnamed type#"); MaybeAppendDecimal(state, 2 + which); MaybeAppend(state, "}"); return true; } state->parse_state = copy; // Closure type. which = -1; if (ParseTwoCharToken(state, "Ul") && DisableAppend(state) && OneOrMore(ParseType, state) && RestoreAppend(state, copy.append) && ParseOneCharToken(state, 'E') && Optional(ParseNumber(state, &which)) && which <= std::numeric_limits::max() - 2 && // Don't overflow. ParseOneCharToken(state, '_')) { MaybeAppend(state, "{lambda()#"); MaybeAppendDecimal(state, 2 + which); MaybeAppend(state, "}"); return true; } state->parse_state = copy; return false; } // ::= [n] // If "number_out" is non-null, then *number_out is set to the value of the // parsed number on success. static bool ParseNumber(State *state, int *number_out) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; bool negative = false; if (ParseOneCharToken(state, 'n')) { negative = true; } const char *p = RemainingInput(state); uint64_t number = 0; for (; *p != '\0'; ++p) { if (IsDigit(*p)) { number = number * 10 + (*p - '0'); } else { break; } } // Apply the sign with uint64_t arithmetic so overflows aren't UB. Gives // "incorrect" results for out-of-range inputs, but negative values only // appear for literals, which aren't printed. if (negative) { number = ~number + 1; } if (p != RemainingInput(state)) { // Conversion succeeded. state->parse_state.mangled_idx += p - RemainingInput(state); if (number_out != nullptr) { // Note: possibly truncate "number". *number_out = number; } return true; } return false; } // Floating-point literals are encoded using a fixed-length lowercase // hexadecimal string. static bool ParseFloatNumber(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; const char *p = RemainingInput(state); for (; *p != '\0'; ++p) { if (!IsDigit(*p) && !(*p >= 'a' && *p <= 'f')) { break; } } if (p != RemainingInput(state)) { // Conversion succeeded. state->parse_state.mangled_idx += p - RemainingInput(state); return true; } return false; } // The is a sequence number in base 36, // using digits and upper case letters static bool ParseSeqId(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; const char *p = RemainingInput(state); for (; *p != '\0'; ++p) { if (!IsDigit(*p) && !(*p >= 'A' && *p <= 'Z')) { break; } } if (p != RemainingInput(state)) { // Conversion succeeded. state->parse_state.mangled_idx += p - RemainingInput(state); return true; } return false; } // ::= (of given length) static bool ParseIdentifier(State *state, int length) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (length < 0 || !AtLeastNumCharsRemaining(RemainingInput(state), length)) { return false; } if (IdentifierIsAnonymousNamespace(state, length)) { MaybeAppend(state, "(anonymous namespace)"); } else { MaybeAppendWithLength(state, RemainingInput(state), length); } state->parse_state.mangled_idx += length; return true; } // ::= nw, and other two letters cases // ::= cv # (cast) // ::= v # vendor extended operator static bool ParseOperatorName(State *state, int *arity) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (!AtLeastNumCharsRemaining(RemainingInput(state), 2)) { return false; } // First check with "cv" (cast) case. ParseState copy = state->parse_state; if (ParseTwoCharToken(state, "cv") && MaybeAppend(state, "operator ") && EnterNestedName(state) && ParseType(state) && LeaveNestedName(state, copy.nest_level)) { if (arity != nullptr) { *arity = 1; } return true; } state->parse_state = copy; // Then vendor extended operators. if (ParseOneCharToken(state, 'v') && ParseDigit(state, arity) && ParseSourceName(state)) { return true; } state->parse_state = copy; // Other operator names should start with a lower alphabet followed // by a lower/upper alphabet. if (!(IsLower(RemainingInput(state)[0]) && IsAlpha(RemainingInput(state)[1]))) { return false; } // We may want to perform a binary search if we really need speed. const AbbrevPair *p; for (p = kOperatorList; p->abbrev != nullptr; ++p) { if (RemainingInput(state)[0] == p->abbrev[0] && RemainingInput(state)[1] == p->abbrev[1]) { if (arity != nullptr) { *arity = p->arity; } MaybeAppend(state, "operator"); if (IsLower(*p->real_name)) { // new, delete, etc. MaybeAppend(state, " "); } MaybeAppend(state, p->real_name); state->parse_state.mangled_idx += 2; return true; } } return false; } // ::= TV // ::= TT // ::= TI // ::= TS // ::= Tc <(base) encoding> // ::= GV <(object) name> // ::= T <(base) encoding> // G++ extensions: // ::= TC <(offset) number> _ <(base) type> // ::= TF // ::= TJ // ::= GR // ::= GA // ::= Th <(base) encoding> // ::= Tv <(base) encoding> // // Note: we don't care much about them since they don't appear in // stack traces. The are special data. static bool ParseSpecialName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "VTIS") && ParseType(state)) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "Tc") && ParseCallOffset(state) && ParseCallOffset(state) && ParseEncoding(state)) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "GV") && ParseName(state)) { return true; } state->parse_state = copy; if (ParseOneCharToken(state, 'T') && ParseCallOffset(state) && ParseEncoding(state)) { return true; } state->parse_state = copy; // G++ extensions if (ParseTwoCharToken(state, "TC") && ParseType(state) && ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') && DisableAppend(state) && ParseType(state)) { RestoreAppend(state, copy.append); return true; } state->parse_state = copy; if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "FJ") && ParseType(state)) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "GR") && ParseName(state)) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "GA") && ParseEncoding(state)) { return true; } state->parse_state = copy; if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "hv") && ParseCallOffset(state) && ParseEncoding(state)) { return true; } state->parse_state = copy; return false; } // ::= h _ // ::= v _ static bool ParseCallOffset(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'h') && ParseNVOffset(state) && ParseOneCharToken(state, '_')) { return true; } state->parse_state = copy; if (ParseOneCharToken(state, 'v') && ParseVOffset(state) && ParseOneCharToken(state, '_')) { return true; } state->parse_state = copy; return false; } // ::= <(offset) number> static bool ParseNVOffset(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; return ParseNumber(state, nullptr); } // ::= <(offset) number> _ <(virtual offset) number> static bool ParseVOffset(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') && ParseNumber(state, nullptr)) { return true; } state->parse_state = copy; return false; } // ::= C1 | C2 | C3 // ::= D0 | D1 | D2 // # GCC extensions: "unified" constructor/destructor. See // # https://github.com/gcc-mirror/gcc/blob/7ad17b583c3643bd4557f29b8391ca7ef08391f5/gcc/cp/mangle.c#L1847 // ::= C4 | D4 static bool ParseCtorDtorName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'C') && ParseCharClass(state, "1234")) { const char *const prev_name = state->out + state->parse_state.prev_name_idx; MaybeAppendWithLength(state, prev_name, state->parse_state.prev_name_length); return true; } state->parse_state = copy; if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "0124")) { const char *const prev_name = state->out + state->parse_state.prev_name_idx; MaybeAppend(state, "~"); MaybeAppendWithLength(state, prev_name, state->parse_state.prev_name_length); return true; } state->parse_state = copy; return false; } // ::= Dt E # decltype of an id-expression or class // # member access (C++0x) // ::= DT E # decltype of an expression (C++0x) static bool ParseDecltype(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "tT") && ParseExpression(state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; return false; } // ::= // ::= P # pointer-to // ::= R # reference-to // ::= O # rvalue reference-to (C++0x) // ::= C # complex pair (C 2000) // ::= G # imaginary (C 2000) // ::= U # vendor extended type qualifier // ::= // ::= // ::= # note: just an alias for // ::= // ::= // ::= // ::= // ::= // ::= // ::= Dp # pack expansion of (C++0x) // static bool ParseType(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; // We should check CV-qualifers, and PRGC things first. // // CV-qualifiers overlap with some operator names, but an operator name is not // valid as a type. To avoid an ambiguity that can lead to exponential time // complexity, refuse to backtrack the CV-qualifiers. // // _Z4aoeuIrMvvE // => _Z 4aoeuI rM v v E // aoeu // => _Z 4aoeuI r Mv v E // aoeu // // By consuming the CV-qualifiers first, the former parse is disabled. if (ParseCVQualifiers(state)) { const bool result = ParseType(state); if (!result) state->parse_state = copy; return result; } state->parse_state = copy; // Similarly, these tag characters can overlap with other s resulting in // two different parse prefixes that land on in the same // place, such as "C3r1xI...". So, disable the "ctor-name = C3" parse by // refusing to backtrack the tag characters. if (ParseCharClass(state, "OPRCG")) { const bool result = ParseType(state); if (!result) state->parse_state = copy; return result; } state->parse_state = copy; if (ParseTwoCharToken(state, "Dp") && ParseType(state)) { return true; } state->parse_state = copy; if (ParseOneCharToken(state, 'U') && ParseSourceName(state) && ParseType(state)) { return true; } state->parse_state = copy; if (ParseBuiltinType(state) || ParseFunctionType(state) || ParseClassEnumType(state) || ParseArrayType(state) || ParsePointerToMemberType(state) || ParseDecltype(state) || // "std" on its own isn't a type. ParseSubstitution(state, /*accept_std=*/false)) { return true; } if (ParseTemplateTemplateParam(state) && ParseTemplateArgs(state)) { return true; } state->parse_state = copy; // Less greedy than . if (ParseTemplateParam(state)) { return true; } return false; } // ::= [r] [V] [K] // We don't allow empty to avoid infinite loop in // ParseType(). static bool ParseCVQualifiers(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; int num_cv_qualifiers = 0; num_cv_qualifiers += ParseOneCharToken(state, 'r'); num_cv_qualifiers += ParseOneCharToken(state, 'V'); num_cv_qualifiers += ParseOneCharToken(state, 'K'); return num_cv_qualifiers > 0; } // ::= v, etc. # single-character builtin types // ::= u // ::= Dd, etc. # two-character builtin types // // Not supported: // ::= DF _ # _FloatN (N bits) // static bool ParseBuiltinType(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; const AbbrevPair *p; for (p = kBuiltinTypeList; p->abbrev != nullptr; ++p) { // Guaranteed only 1- or 2-character strings in kBuiltinTypeList. if (p->abbrev[1] == '\0') { if (ParseOneCharToken(state, p->abbrev[0])) { MaybeAppend(state, p->real_name); return true; } } else if (p->abbrev[2] == '\0' && ParseTwoCharToken(state, p->abbrev)) { MaybeAppend(state, p->real_name); return true; } } ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'u') && ParseSourceName(state)) { return true; } state->parse_state = copy; return false; } // ::= F [Y] E static bool ParseFunctionType(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'F') && Optional(ParseOneCharToken(state, 'Y')) && ParseBareFunctionType(state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; return false; } // ::= <(signature) type>+ static bool ParseBareFunctionType(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; DisableAppend(state); if (OneOrMore(ParseType, state)) { RestoreAppend(state, copy.append); MaybeAppend(state, "()"); return true; } state->parse_state = copy; return false; } // ::= static bool ParseClassEnumType(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; return ParseName(state); } // ::= A <(positive dimension) number> _ <(element) type> // ::= A [<(dimension) expression>] _ <(element) type> static bool ParseArrayType(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'A') && ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') && ParseType(state)) { return true; } state->parse_state = copy; if (ParseOneCharToken(state, 'A') && Optional(ParseExpression(state)) && ParseOneCharToken(state, '_') && ParseType(state)) { return true; } state->parse_state = copy; return false; } // ::= M <(class) type> <(member) type> static bool ParsePointerToMemberType(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'M') && ParseType(state) && ParseType(state)) { return true; } state->parse_state = copy; return false; } // ::= T_ // ::= T _ static bool ParseTemplateParam(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (ParseTwoCharToken(state, "T_")) { MaybeAppend(state, "?"); // We don't support template substitutions. return true; } ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'T') && ParseNumber(state, nullptr) && ParseOneCharToken(state, '_')) { MaybeAppend(state, "?"); // We don't support template substitutions. return true; } state->parse_state = copy; return false; } // ::= // ::= static bool ParseTemplateTemplateParam(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; return (ParseTemplateParam(state) || // "std" on its own isn't a template. ParseSubstitution(state, /*accept_std=*/false)); } // ::= I + E static bool ParseTemplateArgs(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; DisableAppend(state); if (ParseOneCharToken(state, 'I') && OneOrMore(ParseTemplateArg, state) && ParseOneCharToken(state, 'E')) { RestoreAppend(state, copy.append); MaybeAppend(state, "<>"); return true; } state->parse_state = copy; return false; } // ::= // ::= // ::= J * E # argument pack // ::= X E static bool ParseTemplateArg(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'J') && ZeroOrMore(ParseTemplateArg, state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; // There can be significant overlap between the following leading to // exponential backtracking: // // ::= L E // e.g. L 2xxIvE 1 E // ==> // e.g. L 2xx IvE // // This means parsing an entire twice, and can contain // , so this can generate exponential backtracking. There is // only overlap when the remaining input starts with "L ", so // parse all cases that can start this way jointly to share the common prefix. // // We have: // // ::= // ::= // // First, drop all the productions of that must start with something // other than 'L'. All that's left is ; inline it. // // ::= # starts with 'N' // ::= // ::= // ::= # starts with 'Z' // // Drop and inline again: // // ::= // ::= // ::= # starts with 'S' // // Merge the first two, inline , drop last: // // ::= [] // ::= St [] # starts with 'S' // // Drop and inline: // // ::= [] # starts with lowercase // ::= [] # starts with 'C' or 'D' // ::= [] # starts with digit // ::= [] // ::= [] # starts with 'U' // // One more time: // // ::= L [] // // Likewise with : // // ::= L E // ::= LZ E # cannot overlap; drop // ::= L E # cannot overlap; drop // // By similar reasoning as shown above, the only s starting with // are " []". Inline this. // // ::= L [] E // // Now inline both of these into : // // ::= L [] // ::= L [] E // // Merge them and we're done: // // ::= L [] [ E] if (ParseLocalSourceName(state) && Optional(ParseTemplateArgs(state))) { copy = state->parse_state; if (ParseExprCastValue(state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; return true; } // Now that the overlapping cases can't reach this code, we can safely call // both of these. if (ParseType(state) || ParseExprPrimary(state)) { return true; } state->parse_state = copy; if (ParseOneCharToken(state, 'X') && ParseExpression(state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; return false; } // ::= [] // ::= // ::= static inline bool ParseUnresolvedType(State *state) { // No ComplexityGuard because we don't copy the state in this stack frame. return (ParseTemplateParam(state) && Optional(ParseTemplateArgs(state))) || ParseDecltype(state) || ParseSubstitution(state, /*accept_std=*/false); } // ::= [] static inline bool ParseSimpleId(State *state) { // No ComplexityGuard because we don't copy the state in this stack frame. // Note: cannot be followed by a parameter pack; see comment in // ParseUnresolvedType. return ParseSourceName(state) && Optional(ParseTemplateArgs(state)); } // ::= [] // ::= on [] // ::= dn static bool ParseBaseUnresolvedName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (ParseSimpleId(state)) { return true; } ParseState copy = state->parse_state; if (ParseTwoCharToken(state, "on") && ParseOperatorName(state, nullptr) && Optional(ParseTemplateArgs(state))) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "dn") && (ParseUnresolvedType(state) || ParseSimpleId(state))) { return true; } state->parse_state = copy; return false; } // ::= [gs] // ::= sr // ::= srN + E // // ::= [gs] sr + E // static bool ParseUnresolvedName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (Optional(ParseTwoCharToken(state, "gs")) && ParseBaseUnresolvedName(state)) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "sr") && ParseUnresolvedType(state) && ParseBaseUnresolvedName(state)) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "sr") && ParseOneCharToken(state, 'N') && ParseUnresolvedType(state) && OneOrMore(/* ::= */ ParseSimpleId, state) && ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) { return true; } state->parse_state = copy; if (Optional(ParseTwoCharToken(state, "gs")) && ParseTwoCharToken(state, "sr") && OneOrMore(/* ::= */ ParseSimpleId, state) && ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) { return true; } state->parse_state = copy; return false; } // ::= <1-ary operator-name> // ::= <2-ary operator-name> // ::= <3-ary operator-name> // ::= cl + E // ::= cv # type (expression) // ::= cv _ * E # type (expr-list) // ::= st // ::= // ::= // ::= // ::= dt # expr.name // ::= pt # expr->name // ::= sp # argument pack expansion // ::= sr // ::= sr // ::= fp <(top-level) CV-qualifiers> _ // ::= fp <(top-level) CV-qualifiers> _ // ::= fL p <(top-level) CV-qualifiers> _ // ::= fL p <(top-level) CV-qualifiers> _ static bool ParseExpression(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (ParseTemplateParam(state) || ParseExprPrimary(state)) { return true; } // Object/function call expression. ParseState copy = state->parse_state; if (ParseTwoCharToken(state, "cl") && OneOrMore(ParseExpression, state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; // Function-param expression (level 0). if (ParseTwoCharToken(state, "fp") && Optional(ParseCVQualifiers(state)) && Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) { return true; } state->parse_state = copy; // Function-param expression (level 1+). if (ParseTwoCharToken(state, "fL") && Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, 'p') && Optional(ParseCVQualifiers(state)) && Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) { return true; } state->parse_state = copy; // Parse the conversion expressions jointly to avoid re-parsing the in // their common prefix. Parsed as: // ::= cv // ::= _ * E // ::= // // Also don't try ParseOperatorName after seeing "cv", since ParseOperatorName // also needs to accept "cv " in other contexts. if (ParseTwoCharToken(state, "cv")) { if (ParseType(state)) { ParseState copy2 = state->parse_state; if (ParseOneCharToken(state, '_') && ZeroOrMore(ParseExpression, state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy2; if (ParseExpression(state)) { return true; } } } else { // Parse unary, binary, and ternary operator expressions jointly, taking // care not to re-parse subexpressions repeatedly. Parse like: // ::= // [] // ::= [] int arity = -1; if (ParseOperatorName(state, &arity) && arity > 0 && // 0 arity => disabled. (arity < 3 || ParseExpression(state)) && (arity < 2 || ParseExpression(state)) && (arity < 1 || ParseExpression(state))) { return true; } } state->parse_state = copy; // sizeof type if (ParseTwoCharToken(state, "st") && ParseType(state)) { return true; } state->parse_state = copy; // Object and pointer member access expressions. if ((ParseTwoCharToken(state, "dt") || ParseTwoCharToken(state, "pt")) && ParseExpression(state) && ParseType(state)) { return true; } state->parse_state = copy; // Pointer-to-member access expressions. This parses the same as a binary // operator, but it's implemented separately because "ds" shouldn't be // accepted in other contexts that parse an operator name. if (ParseTwoCharToken(state, "ds") && ParseExpression(state) && ParseExpression(state)) { return true; } state->parse_state = copy; // Parameter pack expansion if (ParseTwoCharToken(state, "sp") && ParseExpression(state)) { return true; } state->parse_state = copy; return ParseUnresolvedName(state); } // ::= L <(value) number> E // ::= L <(value) float> E // ::= L E // // A bug in g++'s C++ ABI version 2 (-fabi-version=2). // ::= LZ E // // Warning, subtle: the "bug" LZ production above is ambiguous with the first // production where starts with , which can lead to // exponential backtracking in two scenarios: // // - When whatever follows the E in the in the first production is // not a name, we backtrack the whole and re-parse the whole thing. // // - When whatever follows the in the first production is not a // number and this may be followed by a name, we backtrack the // and re-parse it. // // Moreover this ambiguity isn't always resolved -- for example, the following // has two different parses: // // _ZaaILZ4aoeuE1x1EvE // => operator&& // => operator&&<(aoeu::x)(1), void> // // To resolve this, we just do what GCC's demangler does, and refuse to parse // casts to types. static bool ParseExprPrimary(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; // The "LZ" special case: if we see LZ, we commit to accept "LZ E" // or fail, no backtracking. if (ParseTwoCharToken(state, "LZ")) { if (ParseEncoding(state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; return false; } // The merged cast production. if (ParseOneCharToken(state, 'L') && ParseType(state) && ParseExprCastValue(state)) { return true; } state->parse_state = copy; if (ParseOneCharToken(state, 'L') && ParseMangledName(state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; return false; } // or , followed by 'E', as described above ParseExprPrimary. static bool ParseExprCastValue(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; // We have to be able to backtrack after accepting a number because we could // have e.g. "7fffE", which will accept "7" as a number but then fail to find // the 'E'. ParseState copy = state->parse_state; if (ParseNumber(state, nullptr) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; if (ParseFloatNumber(state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; return false; } // ::= Z <(function) encoding> E <(entity) name> [] // ::= Z <(function) encoding> E s [] // // Parsing a common prefix of these two productions together avoids an // exponential blowup of backtracking. Parse like: // := Z E // ::= s [] // ::= [] static bool ParseLocalNameSuffix(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (MaybeAppend(state, "::") && ParseName(state) && Optional(ParseDiscriminator(state))) { return true; } // Since we're not going to overwrite the above "::" by re-parsing the // (whose trailing '\0' byte was in the byte now holding the // first ':'), we have to rollback the "::" if the parse failed. if (state->parse_state.append) { state->out[state->parse_state.out_cur_idx - 2] = '\0'; } return ParseOneCharToken(state, 's') && Optional(ParseDiscriminator(state)); } static bool ParseLocalName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'Z') && ParseEncoding(state) && ParseOneCharToken(state, 'E') && ParseLocalNameSuffix(state)) { return true; } state->parse_state = copy; return false; } // := _ <(non-negative) number> static bool ParseDiscriminator(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, '_') && ParseNumber(state, nullptr)) { return true; } state->parse_state = copy; return false; } // ::= S_ // ::= S _ // ::= St, etc. // // "St" is special in that it's not valid as a standalone name, and it *is* // allowed to precede a name without being wrapped in "N...E". This means that // if we accept it on its own, we can accept "St1a" and try to parse // template-args, then fail and backtrack, accept "St" on its own, then "1a" as // an unqualified name and re-parse the same template-args. To block this // exponential backtracking, we disable it with 'accept_std=false' in // problematic contexts. static bool ParseSubstitution(State *state, bool accept_std) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (ParseTwoCharToken(state, "S_")) { MaybeAppend(state, "?"); // We don't support substitutions. return true; } ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'S') && ParseSeqId(state) && ParseOneCharToken(state, '_')) { MaybeAppend(state, "?"); // We don't support substitutions. return true; } state->parse_state = copy; // Expand abbreviations like "St" => "std". if (ParseOneCharToken(state, 'S')) { const AbbrevPair *p; for (p = kSubstitutionList; p->abbrev != nullptr; ++p) { if (RemainingInput(state)[0] == p->abbrev[1] && (accept_std || p->abbrev[1] != 't')) { MaybeAppend(state, "std"); if (p->real_name[0] != '\0') { MaybeAppend(state, "::"); MaybeAppend(state, p->real_name); } ++state->parse_state.mangled_idx; return true; } } } state->parse_state = copy; return false; } // Parse , optionally followed by either a function-clone suffix // or version suffix. Returns true only if all of "mangled_cur" was consumed. static bool ParseTopLevelMangledName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (ParseMangledName(state)) { if (RemainingInput(state)[0] != '\0') { // Drop trailing function clone suffix, if any. if (IsFunctionCloneSuffix(RemainingInput(state))) { return true; } // Append trailing version suffix if any. // ex. _Z3foo@@GLIBCXX_3.4 if (RemainingInput(state)[0] == '@') { MaybeAppend(state, RemainingInput(state)); return true; } return false; // Unconsumed suffix. } return true; } return false; } static bool Overflowed(const State *state) { return state->parse_state.out_cur_idx >= state->out_end_idx; } // The demangler entry point. bool Demangle(const char *mangled, char *out, int out_size) { State state; InitState(&state, mangled, out, out_size); return ParseTopLevelMangledName(&state) && !Overflowed(&state); } } // namespace debugging_internal } // namespace absl