// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/container/internal/hashtablez_sampler.h" #include #include #include #include #include #include "absl/base/attributes.h" #include "absl/container/internal/have_sse.h" #include "absl/debugging/stacktrace.h" #include "absl/memory/memory.h" #include "absl/synchronization/mutex.h" namespace absl { namespace container_internal { constexpr int HashtablezInfo::kMaxStackDepth; namespace { ABSL_CONST_INIT std::atomic g_hashtablez_enabled{ false }; ABSL_CONST_INIT std::atomic g_hashtablez_sample_parameter{1 << 10}; ABSL_CONST_INIT std::atomic g_hashtablez_max_samples{1 << 20}; // Returns the next pseudo-random value. // pRNG is: aX+b mod c with a = 0x5DEECE66D, b = 0xB, c = 1<<48 // This is the lrand64 generator. uint64_t NextRandom(uint64_t rnd) { const uint64_t prng_mult = uint64_t{0x5DEECE66D}; const uint64_t prng_add = 0xB; const uint64_t prng_mod_power = 48; const uint64_t prng_mod_mask = ~(~uint64_t{0} << prng_mod_power); return (prng_mult * rnd + prng_add) & prng_mod_mask; } // Generates a geometric variable with the specified mean. // This is done by generating a random number between 0 and 1 and applying // the inverse cumulative distribution function for an exponential. // Specifically: Let m be the inverse of the sample period, then // the probability distribution function is m*exp(-mx) so the CDF is // p = 1 - exp(-mx), so // q = 1 - p = exp(-mx) // log_e(q) = -mx // -log_e(q)/m = x // log_2(q) * (-log_e(2) * 1/m) = x // In the code, q is actually in the range 1 to 2**26, hence the -26 below // int64_t GetGeometricVariable(int64_t mean) { #if ABSL_HAVE_THREAD_LOCAL thread_local #else // ABSL_HAVE_THREAD_LOCAL // SampleSlow and hence GetGeometricVariable is guarded by a single mutex when // there are not thread locals. Thus, a single global rng is acceptable for // that case. static #endif // ABSL_HAVE_THREAD_LOCAL uint64_t rng = []() { // We don't get well distributed numbers from this so we call // NextRandom() a bunch to mush the bits around. We use a global_rand // to handle the case where the same thread (by memory address) gets // created and destroyed repeatedly. ABSL_CONST_INIT static std::atomic global_rand(0); uint64_t r = reinterpret_cast(&rng) + global_rand.fetch_add(1, std::memory_order_relaxed); for (int i = 0; i < 20; ++i) { r = NextRandom(r); } return r; }(); rng = NextRandom(rng); // Take the top 26 bits as the random number // (This plus the 1<<58 sampling bound give a max possible step of // 5194297183973780480 bytes.) const uint64_t prng_mod_power = 48; // Number of bits in prng // The uint32_t cast is to prevent a (hard-to-reproduce) NAN // under piii debug for some binaries. double q = static_cast(rng >> (prng_mod_power - 26)) + 1.0; // Put the computed p-value through the CDF of a geometric. double interval = (log2(q) - 26) * (-std::log(2.0) * mean); // Very large values of interval overflow int64_t. If we happen to // hit such improbable condition, we simply cheat and clamp interval // to largest supported value. if (interval > static_cast(std::numeric_limits::max() / 2)) { return std::numeric_limits::max() / 2; } // Small values of interval are equivalent to just sampling next time. if (interval < 1) { return 1; } return static_cast(interval); } } // namespace HashtablezSampler& HashtablezSampler::Global() { static auto* sampler = new HashtablezSampler(); return *sampler; } HashtablezSampler::DisposeCallback HashtablezSampler::SetDisposeCallback( DisposeCallback f) { return dispose_.exchange(f, std::memory_order_relaxed); } HashtablezInfo::HashtablezInfo() { PrepareForSampling(); } HashtablezInfo::~HashtablezInfo() = default; void HashtablezInfo::PrepareForSampling() { capacity.store(0, std::memory_order_relaxed); size.store(0, std::memory_order_relaxed); num_erases.store(0, std::memory_order_relaxed); max_probe_length.store(0, std::memory_order_relaxed); total_probe_length.store(0, std::memory_order_relaxed); hashes_bitwise_or.store(0, std::memory_order_relaxed); hashes_bitwise_and.store(~size_t{}, std::memory_order_relaxed); create_time = absl::Now(); // The inliner makes hardcoded skip_count difficult (especially when combined // with LTO). We use the ability to exclude stacks by regex when encoding // instead. depth = absl::GetStackTrace(stack, HashtablezInfo::kMaxStackDepth, /* skip_count= */ 0); dead = nullptr; } HashtablezSampler::HashtablezSampler() : dropped_samples_(0), size_estimate_(0), all_(nullptr), dispose_(nullptr) { absl::MutexLock l(&graveyard_.init_mu); graveyard_.dead = &graveyard_; } HashtablezSampler::~HashtablezSampler() { HashtablezInfo* s = all_.load(std::memory_order_acquire); while (s != nullptr) { HashtablezInfo* next = s->next; delete s; s = next; } } void HashtablezSampler::PushNew(HashtablezInfo* sample) { sample->next = all_.load(std::memory_order_relaxed); while (!all_.compare_exchange_weak(sample->next, sample, std::memory_order_release, std::memory_order_relaxed)) { } } void HashtablezSampler::PushDead(HashtablezInfo* sample) { if (auto* dispose = dispose_.load(std::memory_order_relaxed)) { dispose(*sample); } absl::MutexLock graveyard_lock(&graveyard_.init_mu); absl::MutexLock sample_lock(&sample->init_mu); sample->dead = graveyard_.dead; graveyard_.dead = sample; } HashtablezInfo* HashtablezSampler::PopDead() { absl::MutexLock graveyard_lock(&graveyard_.init_mu); // The list is circular, so eventually it collapses down to // graveyard_.dead == &graveyard_ // when it is empty. HashtablezInfo* sample = graveyard_.dead; if (sample == &graveyard_) return nullptr; absl::MutexLock sample_lock(&sample->init_mu); graveyard_.dead = sample->dead; sample->PrepareForSampling(); return sample; } HashtablezInfo* HashtablezSampler::Register() { int64_t size = size_estimate_.fetch_add(1, std::memory_order_relaxed); if (size > g_hashtablez_max_samples.load(std::memory_order_relaxed)) { size_estimate_.fetch_sub(1, std::memory_order_relaxed); dropped_samples_.fetch_add(1, std::memory_order_relaxed); return nullptr; } HashtablezInfo* sample = PopDead(); if (sample == nullptr) { // Resurrection failed. Hire a new warlock. sample = new HashtablezInfo(); PushNew(sample); } return sample; } void HashtablezSampler::Unregister(HashtablezInfo* sample) { PushDead(sample); size_estimate_.fetch_sub(1, std::memory_order_relaxed); } int64_t HashtablezSampler::Iterate( const std::function& f) { HashtablezInfo* s = all_.load(std::memory_order_acquire); while (s != nullptr) { absl::MutexLock l(&s->init_mu); if (s->dead == nullptr) { f(*s); } s = s->next; } return dropped_samples_.load(std::memory_order_relaxed); } static bool ShouldForceSampling() { enum ForceState { kDontForce, kForce, kUninitialized }; ABSL_CONST_INIT static std::atomic global_state{ kUninitialized}; ForceState state = global_state.load(std::memory_order_relaxed); if (ABSL_PREDICT_TRUE(state == kDontForce)) return false; if (state == kUninitialized) { state = AbslContainerInternalSampleEverything() ? kForce : kDontForce; global_state.store(state, std::memory_order_relaxed); } return state == kForce; } HashtablezInfo* SampleSlow(int64_t* next_sample) { if (ABSL_PREDICT_FALSE(ShouldForceSampling())) { *next_sample = 1; return HashtablezSampler::Global().Register(); } bool first = *next_sample < 0; *next_sample = GetGeometricVariable( g_hashtablez_sample_parameter.load(std::memory_order_relaxed)); // g_hashtablez_enabled can be dynamically flipped, we need to set a threshold // low enough that we will start sampling in a reasonable time, so we just use // the default sampling rate. if (!g_hashtablez_enabled.load(std::memory_order_relaxed)) return nullptr; // We will only be negative on our first count, so we should just retry in // that case. if (first) { if (ABSL_PREDICT_TRUE(--*next_sample > 0)) return nullptr; return SampleSlow(next_sample); } return HashtablezSampler::Global().Register(); } #if ABSL_PER_THREAD_TLS == 1 ABSL_PER_THREAD_TLS_KEYWORD int64_t global_next_sample = 0; #endif // ABSL_PER_THREAD_TLS == 1 void UnsampleSlow(HashtablezInfo* info) { HashtablezSampler::Global().Unregister(info); } void RecordInsertSlow(HashtablezInfo* info, size_t hash, size_t distance_from_desired) { // SwissTables probe in groups of 16, so scale this to count items probes and // not offset from desired. size_t probe_length = distance_from_desired; #if SWISSTABLE_HAVE_SSE2 probe_length /= 16; #else probe_length /= 8; #endif info->hashes_bitwise_and.fetch_and(hash, std::memory_order_relaxed); info->hashes_bitwise_or.fetch_or(hash, std::memory_order_relaxed); info->max_probe_length.store( std::max(info->max_probe_length.load(std::memory_order_relaxed), probe_length), std::memory_order_relaxed); info->total_probe_length.fetch_add(probe_length, std::memory_order_relaxed); info->size.fetch_add(1, std::memory_order_relaxed); } void SetHashtablezEnabled(bool enabled) { g_hashtablez_enabled.store(enabled, std::memory_order_release); } void SetHashtablezSampleParameter(int32_t rate) { if (rate > 0) { g_hashtablez_sample_parameter.store(rate, std::memory_order_release); } else { ABSL_RAW_LOG(ERROR, "Invalid hashtablez sample rate: %lld", static_cast(rate)); // NOLINT(runtime/int) } } void SetHashtablezMaxSamples(int32_t max) { if (max > 0) { g_hashtablez_max_samples.store(max, std::memory_order_release); } else { ABSL_RAW_LOG(ERROR, "Invalid hashtablez max samples: %lld", static_cast(max)); // NOLINT(runtime/int) } } } // namespace container_internal } // namespace absl