// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Helper class to perform the Empty Base Optimization. // Ts can contain classes and non-classes, empty or not. For the ones that // are empty classes, we perform the optimization. If all types in Ts are empty // classes, then CompressedTuple is itself an empty class. // // To access the members, use member get() function. // // Eg: // absl::container_internal::CompressedTuple value(7, t1, t2, // t3); // assert(value.get<0>() == 7); // T1& t1 = value.get<1>(); // const T2& t2 = value.get<2>(); // ... // // https://en.cppreference.com/w/cpp/language/ebo #ifndef ABSL_CONTAINER_INTERNAL_COMPRESSED_TUPLE_H_ #define ABSL_CONTAINER_INTERNAL_COMPRESSED_TUPLE_H_ #include #include #include #include #include "absl/utility/utility.h" #if defined(_MSC_VER) && !defined(__NVCC__) // We need to mark these classes with this declspec to ensure that // CompressedTuple happens. #define ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC __declspec(empty_bases) #else #define ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC #endif namespace absl { namespace container_internal { template class CompressedTuple; namespace internal_compressed_tuple { template struct Elem; template struct Elem, I> : std::tuple_element> {}; template using ElemT = typename Elem::type; // Use the __is_final intrinsic if available. Where it's not available, classes // declared with the 'final' specifier cannot be used as CompressedTuple // elements. // TODO(sbenza): Replace this with std::is_final in C++14. template constexpr bool IsFinal() { #if defined(__clang__) || defined(__GNUC__) return __is_final(T); #else return false; #endif } // We can't use EBCO on other CompressedTuples because that would mean that we // derive from multiple Storage<> instantiations with the same I parameter, // and potentially from multiple identical Storage<> instantiations. So anytime // we use type inheritance rather than encapsulation, we mark // CompressedTupleImpl, to make this easy to detect. struct uses_inheritance {}; template constexpr bool ShouldUseBase() { return std::is_class::value && std::is_empty::value && !IsFinal() && !std::is_base_of::value; } // The storage class provides two specializations: // - For empty classes, it stores T as a base class. // - For everything else, it stores T as a member. template ::type>()> #else bool UseBase = ShouldUseBase()> #endif struct Storage { T value; constexpr Storage() = default; template explicit constexpr Storage(absl::in_place_t, V&& v) : value(absl::forward(v)) {} constexpr const T& get() const& { return value; } T& get() & { return value; } constexpr const T&& get() const&& { return absl::move(*this).value; } T&& get() && { return std::move(*this).value; } }; template struct ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC Storage : T { constexpr Storage() = default; template explicit constexpr Storage(absl::in_place_t, V&& v) : T(absl::forward(v)) {} constexpr const T& get() const& { return *this; } T& get() & { return *this; } constexpr const T&& get() const&& { return absl::move(*this); } T&& get() && { return std::move(*this); } }; template struct ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTupleImpl; template struct ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTupleImpl< CompressedTuple, absl::index_sequence, ShouldAnyUseBase> // We use the dummy identity function through std::integral_constant to // convince MSVC of accepting and expanding I in that context. Without it // you would get: // error C3548: 'I': parameter pack cannot be used in this context : uses_inheritance, Storage::value>... { constexpr CompressedTupleImpl() = default; template explicit constexpr CompressedTupleImpl(absl::in_place_t, Vs&&... args) : Storage(absl::in_place, absl::forward(args))... {} friend CompressedTuple; }; template struct ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTupleImpl< CompressedTuple, absl::index_sequence, false> // We use the dummy identity function as above... : Storage::value, false>... { constexpr CompressedTupleImpl() = default; template explicit constexpr CompressedTupleImpl(absl::in_place_t, Vs&&... args) : Storage(absl::in_place, absl::forward(args))... {} friend CompressedTuple; }; std::false_type Or(std::initializer_list); std::true_type Or(std::initializer_list); // MSVC requires this to be done separately rather than within the declaration // of CompressedTuple below. template constexpr bool ShouldAnyUseBase() { return decltype( Or({std::integral_constant()>()...})){}; } template using TupleMoveConstructible = typename std::conditional< std::is_reference::value, std::is_convertible, std::is_constructible>::type; } // namespace internal_compressed_tuple // Helper class to perform the Empty Base Class Optimization. // Ts can contain classes and non-classes, empty or not. For the ones that // are empty classes, we perform the CompressedTuple. If all types in Ts are // empty classes, then CompressedTuple is itself an empty class. (This // does not apply when one or more of those empty classes is itself an empty // CompressedTuple.) // // To access the members, use member .get() function. // // Eg: // absl::container_internal::CompressedTuple value(7, t1, t2, // t3); // assert(value.get<0>() == 7); // T1& t1 = value.get<1>(); // const T2& t2 = value.get<2>(); // ... // // https://en.cppreference.com/w/cpp/language/ebo template class ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTuple : private internal_compressed_tuple::CompressedTupleImpl< CompressedTuple, absl::index_sequence_for, internal_compressed_tuple::ShouldAnyUseBase()> { private: template using ElemT = internal_compressed_tuple::ElemT; template using StorageT = internal_compressed_tuple::Storage, I>; public: // There seems to be a bug in MSVC dealing in which using '=default' here will // cause the compiler to ignore the body of other constructors. The work- // around is to explicitly implement the default constructor. #if defined(_MSC_VER) constexpr CompressedTuple() : CompressedTuple::CompressedTupleImpl() {} #else constexpr CompressedTuple() = default; #endif explicit constexpr CompressedTuple(const Ts&... base) : CompressedTuple::CompressedTupleImpl(absl::in_place, base...) {} template ...)>>, internal_compressed_tuple::TupleMoveConstructible< Ts, Vs&&>...>::value, bool> = true> explicit constexpr CompressedTuple(Vs&&... base) : CompressedTuple::CompressedTupleImpl(absl::in_place, absl::forward(base)...) {} template ElemT& get() & { return internal_compressed_tuple::Storage, I>::get(); } template constexpr const ElemT& get() const& { return StorageT::get(); } template ElemT&& get() && { return std::move(*this).StorageT::get(); } template constexpr const ElemT&& get() const&& { return absl::move(*this).StorageT::get(); } }; // Explicit specialization for a zero-element tuple // (needed to avoid ambiguous overloads for the default constructor). template <> class ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTuple<> {}; } // namespace container_internal } // namespace absl #undef ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC #endif // ABSL_CONTAINER_INTERNAL_COMPRESSED_TUPLE_H_