From 48cd2c3f351ff188bc85684b84a91b6e6d17d896 Mon Sep 17 00:00:00 2001 From: Abseil Team Date: Thu, 27 Sep 2018 12:24:54 -0700 Subject: Export of internal Abseil changes. -- 4eacae3ff1b14b1d309e8092185bc10e8a6203cf by Derek Mauro : Release SwissTable - a fast, efficient, cache-friendly hash table. https://www.youtube.com/watch?v=ncHmEUmJZf4 PiperOrigin-RevId: 214816527 -- df8c3dfab3cfb2f4365909a84d0683b193cfbb11 by Derek Mauro : Internal change PiperOrigin-RevId: 214785288 -- 1eabd5266bbcebc33eecc91e5309b751856a75c8 by Abseil Team : Internal change PiperOrigin-RevId: 214722931 -- 2ebbfac950f83146b46253038e7dd7dcde9f2951 by Derek Mauro : Internal change PiperOrigin-RevId: 214701684 GitOrigin-RevId: 4eacae3ff1b14b1d309e8092185bc10e8a6203cf Change-Id: I9ba64e395b22ad7863213d157b8019b082adc19d --- absl/hash/internal/hash.h | 885 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 885 insertions(+) create mode 100644 absl/hash/internal/hash.h (limited to 'absl/hash/internal/hash.h') diff --git a/absl/hash/internal/hash.h b/absl/hash/internal/hash.h new file mode 100644 index 0000000..4543d67 --- /dev/null +++ b/absl/hash/internal/hash.h @@ -0,0 +1,885 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// ----------------------------------------------------------------------------- +// File: hash.h +// ----------------------------------------------------------------------------- +// +#ifndef ABSL_HASH_INTERNAL_HASH_H_ +#define ABSL_HASH_INTERNAL_HASH_H_ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "absl/base/internal/endian.h" +#include "absl/base/port.h" +#include "absl/container/fixed_array.h" +#include "absl/meta/type_traits.h" +#include "absl/numeric/int128.h" +#include "absl/strings/string_view.h" +#include "absl/types/optional.h" +#include "absl/types/variant.h" +#include "absl/utility/utility.h" +#include "absl/hash/internal/city.h" + +namespace absl { +namespace hash_internal { + +// HashStateBase +// +// A hash state object represents an intermediate state in the computation +// of an unspecified hash algorithm. `HashStateBase` provides a CRTP style +// base class for hash state implementations. Developers adding type support +// for `absl::Hash` should not rely on any parts of the state object other than +// the following member functions: +// +// * HashStateBase::combine() +// * HashStateBase::combine_contiguous() +// +// A derived hash state class of type `H` must provide a static member function +// with a signature similar to the following: +// +// `static H combine_contiguous(H state, const unsigned char*, size_t)`. +// +// `HashStateBase` will provide a complete implementations for a hash state +// object in terms of this method. +// +// Example: +// +// // Use CRTP to define your derived class. +// struct MyHashState : HashStateBase { +// static H combine_contiguous(H state, const unsigned char*, size_t); +// using MyHashState::HashStateBase::combine; +// using MyHashState::HashStateBase::combine_contiguous; +// }; +template +class HashStateBase { + public: + // HashStateBase::combine() + // + // Combines an arbitrary number of values into a hash state, returning the + // updated state. + // + // Each of the value types `T` must be separately hashable by the Abseil + // hashing framework. + // + // NOTE: + // + // state = H::combine(std::move(state), value1, value2, value3); + // + // is guaranteed to produce the same hash expansion as: + // + // state = H::combine(std::move(state), value1); + // state = H::combine(std::move(state), value2); + // state = H::combine(std::move(state), value3); + template + static H combine(H state, const T& value, const Ts&... values); + static H combine(H state) { return state; } + + // HashStateBase::combine_contiguous() + // + // Combines a contiguous array of `size` elements into a hash state, returning + // the updated state. + // + // NOTE: + // + // state = H::combine_contiguous(std::move(state), data, size); + // + // is NOT guaranteed to produce the same hash expansion as a for-loop (it may + // perform internal optimizations). If you need this guarantee, use the + // for-loop instead. + template + static H combine_contiguous(H state, const T* data, size_t size); +}; + +// is_uniquely_represented +// +// `is_uniquely_represented` is a trait class that indicates whether `T` +// is uniquely represented. +// +// A type is "uniquely represented" if two equal values of that type are +// guaranteed to have the same bytes in their underlying storage. In other +// words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be +// zero. This property cannot be detected automatically, so this trait is false +// by default, but can be specialized by types that wish to assert that they are +// uniquely represented. This makes them eligible for certain optimizations. +// +// If you have any doubt whatsoever, do not specialize this template. +// The default is completely safe, and merely disables some optimizations +// that will not matter for most types. Specializing this template, +// on the other hand, can be very hazardous. +// +// To be uniquely represented, a type must not have multiple ways of +// representing the same value; for example, float and double are not +// uniquely represented, because they have distinct representations for +// +0 and -0. Furthermore, the type's byte representation must consist +// solely of user-controlled data, with no padding bits and no compiler- +// controlled data such as vptrs or sanitizer metadata. This is usually +// very difficult to guarantee, because in most cases the compiler can +// insert data and padding bits at its own discretion. +// +// If you specialize this template for a type `T`, you must do so in the file +// that defines that type (or in this file). If you define that specialization +// anywhere else, `is_uniquely_represented` could have different meanings +// in different places. +// +// The Enable parameter is meaningless; it is provided as a convenience, +// to support certain SFINAE techniques when defining specializations. +template +struct is_uniquely_represented : std::false_type {}; + +// is_uniquely_represented +// +// unsigned char is a synonym for "byte", so it is guaranteed to be +// uniquely represented. +template <> +struct is_uniquely_represented : std::true_type {}; + +// is_uniquely_represented for non-standard integral types +// +// Integral types other than bool should be uniquely represented on any +// platform that this will plausibly be ported to. +template +struct is_uniquely_represented< + Integral, typename std::enable_if::value>::type> + : std::true_type {}; + +// is_uniquely_represented +// +// +template <> +struct is_uniquely_represented : std::false_type {}; + +// hash_bytes() +// +// Convenience function that combines `hash_state` with the byte representation +// of `value`. +template +H hash_bytes(H hash_state, const T& value) { + const unsigned char* start = reinterpret_cast(&value); + return H::combine_contiguous(std::move(hash_state), start, sizeof(value)); +} + +// ----------------------------------------------------------------------------- +// AbslHashValue for Basic Types +// ----------------------------------------------------------------------------- + +// Note: Default `AbslHashValue` implementations live in `hash_internal`. This +// allows us to block lexical scope lookup when doing an unqualified call to +// `AbslHashValue` below. User-defined implementations of `AbslHashValue` can +// only be found via ADL. + +// AbslHashValue() for hashing bool values +// +// We use SFINAE to ensure that this overload only accepts bool, not types that +// are convertible to bool. +template +typename std::enable_if::value, H>::type AbslHashValue( + H hash_state, B value) { + return H::combine(std::move(hash_state), + static_cast(value ? 1 : 0)); +} + +// AbslHashValue() for hashing enum values +template +typename std::enable_if::value, H>::type AbslHashValue( + H hash_state, Enum e) { + // In practice, we could almost certainly just invoke hash_bytes directly, + // but it's possible that a sanitizer might one day want to + // store data in the unused bits of an enum. To avoid that risk, we + // convert to the underlying type before hashing. Hopefully this will get + // optimized away; if not, we can reopen discussion with c-toolchain-team. + return H::combine(std::move(hash_state), + static_cast::type>(e)); +} +// AbslHashValue() for hashing floating-point values +template +typename std::enable_if::value, H>::type +AbslHashValue(H hash_state, Float value) { + return hash_internal::hash_bytes(std::move(hash_state), + value == 0 ? 0 : value); +} + +// Long double has the property that it might have extra unused bytes in it. +// For example, in x86 sizeof(long double)==16 but it only really uses 80-bits +// of it. This means we can't use hash_bytes on a long double and have to +// convert it to something else first. +template +H AbslHashValue(H hash_state, long double value) { + const int category = std::fpclassify(value); + switch (category) { + case FP_INFINITE: + // Add the sign bit to differentiate between +Inf and -Inf + hash_state = H::combine(std::move(hash_state), std::signbit(value)); + break; + + case FP_NAN: + case FP_ZERO: + default: + // Category is enough for these. + break; + + case FP_NORMAL: + case FP_SUBNORMAL: + // We can't convert `value` directly to double because this would have + // undefined behavior if the value is out of range. + // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is + // guaranteed to be in range for `double`. The truncation is + // implementation defined, but that works as long as it is deterministic. + int exp; + auto mantissa = static_cast(std::frexp(value, &exp)); + hash_state = H::combine(std::move(hash_state), mantissa, exp); + } + + return H::combine(std::move(hash_state), category); +} + +// AbslHashValue() for hashing pointers +template +H AbslHashValue(H hash_state, T* ptr) { + return hash_internal::hash_bytes(std::move(hash_state), ptr); +} + +// AbslHashValue() for hashing nullptr_t +template +H AbslHashValue(H hash_state, std::nullptr_t) { + return H::combine(std::move(hash_state), static_cast(nullptr)); +} + +// ----------------------------------------------------------------------------- +// AbslHashValue for Composite Types +// ----------------------------------------------------------------------------- + +// is_hashable() +// +// Trait class which returns true if T is hashable by the absl::Hash framework. +// Used for the AbslHashValue implementations for composite types below. +template +struct is_hashable; + +// AbslHashValue() for hashing pairs +template +typename std::enable_if::value && is_hashable::value, + H>::type +AbslHashValue(H hash_state, const std::pair& p) { + return H::combine(std::move(hash_state), p.first, p.second); +} + +// hash_tuple() +// +// Helper function for hashing a tuple. The third argument should +// be an index_sequence running from 0 to tuple_size - 1. +template +H hash_tuple(H hash_state, const Tuple& t, absl::index_sequence) { + return H::combine(std::move(hash_state), std::get(t)...); +} + +// AbslHashValue for hashing tuples +template +#if _MSC_VER +// This SFINAE gets MSVC confused under some conditions. Let's just disable it +// for now. +H +#else +typename std::enable_if...>::value, H>::type +#endif +AbslHashValue(H hash_state, const std::tuple& t) { + return hash_internal::hash_tuple(std::move(hash_state), t, + absl::make_index_sequence()); +} + +// ----------------------------------------------------------------------------- +// AbslHashValue for Pointers +// ----------------------------------------------------------------------------- + +// AbslHashValue for hashing unique_ptr +template +H AbslHashValue(H hash_state, const std::unique_ptr& ptr) { + return H::combine(std::move(hash_state), ptr.get()); +} + +// AbslHashValue for hashing shared_ptr +template +H AbslHashValue(H hash_state, const std::shared_ptr& ptr) { + return H::combine(std::move(hash_state), ptr.get()); +} + +// ----------------------------------------------------------------------------- +// AbslHashValue for String-Like Types +// ----------------------------------------------------------------------------- + +// AbslHashValue for hashing strings +// +// All the string-like types supported here provide the same hash expansion for +// the same character sequence. These types are: +// +// - `std::string` (and std::basic_string, A> for +// any allocator A) +// - `absl::string_view` and `std::string_view` +// +// For simplicity, we currently support only `char` strings. This support may +// be broadened, if necessary, but with some caution - this overload would +// misbehave in cases where the traits' `eq()` member isn't equivalent to `==` +// on the underlying character type. +template +H AbslHashValue(H hash_state, absl::string_view str) { + return H::combine( + H::combine_contiguous(std::move(hash_state), str.data(), str.size()), + str.size()); +} + +// ----------------------------------------------------------------------------- +// AbslHashValue for Sequence Containers +// ----------------------------------------------------------------------------- + +// AbslHashValue for hashing std::array +template +typename std::enable_if::value, H>::type AbslHashValue( + H hash_state, const std::array& array) { + return H::combine_contiguous(std::move(hash_state), array.data(), + array.size()); +} + +// AbslHashValue for hashing std::deque +template +typename std::enable_if::value, H>::type AbslHashValue( + H hash_state, const std::deque& deque) { + // TODO(gromer): investigate a more efficient implementation taking + // advantage of the chunk structure. + for (const auto& t : deque) { + hash_state = H::combine(std::move(hash_state), t); + } + return H::combine(std::move(hash_state), deque.size()); +} + +// AbslHashValue for hashing std::forward_list +template +typename std::enable_if::value, H>::type AbslHashValue( + H hash_state, const std::forward_list& list) { + size_t size = 0; + for (const T& t : list) { + hash_state = H::combine(std::move(hash_state), t); + ++size; + } + return H::combine(std::move(hash_state), size); +} + +// AbslHashValue for hashing std::list +template +typename std::enable_if::value, H>::type AbslHashValue( + H hash_state, const std::list& list) { + for (const auto& t : list) { + hash_state = H::combine(std::move(hash_state), t); + } + return H::combine(std::move(hash_state), list.size()); +} + +// AbslHashValue for hashing std::vector +// +// Do not use this for vector. It does not have a .data(), and a fallback +// for std::hash<> is most likely faster. +template +typename std::enable_if::value && !std::is_same::value, + H>::type +AbslHashValue(H hash_state, const std::vector& vector) { + return H::combine(H::combine_contiguous(std::move(hash_state), vector.data(), + vector.size()), + vector.size()); +} + +// ----------------------------------------------------------------------------- +// AbslHashValue for Ordered Associative Containers +// ----------------------------------------------------------------------------- + +// AbslHashValue for hashing std::map +template +typename std::enable_if::value && is_hashable::value, + H>::type +AbslHashValue(H hash_state, const std::map& map) { + for (const auto& t : map) { + hash_state = H::combine(std::move(hash_state), t); + } + return H::combine(std::move(hash_state), map.size()); +} + +// AbslHashValue for hashing std::multimap +template +typename std::enable_if::value && is_hashable::value, + H>::type +AbslHashValue(H hash_state, + const std::multimap& map) { + for (const auto& t : map) { + hash_state = H::combine(std::move(hash_state), t); + } + return H::combine(std::move(hash_state), map.size()); +} + +// AbslHashValue for hashing std::set +template +typename std::enable_if::value, H>::type AbslHashValue( + H hash_state, const std::set& set) { + for (const auto& t : set) { + hash_state = H::combine(std::move(hash_state), t); + } + return H::combine(std::move(hash_state), set.size()); +} + +// AbslHashValue for hashing std::multiset +template +typename std::enable_if::value, H>::type AbslHashValue( + H hash_state, const std::multiset& set) { + for (const auto& t : set) { + hash_state = H::combine(std::move(hash_state), t); + } + return H::combine(std::move(hash_state), set.size()); +} + +// ----------------------------------------------------------------------------- +// AbslHashValue for Wrapper Types +// ----------------------------------------------------------------------------- + +// AbslHashValue for hashing absl::optional +template +typename std::enable_if::value, H>::type AbslHashValue( + H hash_state, const absl::optional& opt) { + if (opt) hash_state = H::combine(std::move(hash_state), *opt); + return H::combine(std::move(hash_state), opt.has_value()); +} + +// VariantVisitor +template +struct VariantVisitor { + H&& hash_state; + template + H operator()(const T& t) const { + return H::combine(std::move(hash_state), t); + } +}; + +// AbslHashValue for hashing absl::variant +template +typename std::enable_if...>::value, H>::type +AbslHashValue(H hash_state, const absl::variant& v) { + if (!v.valueless_by_exception()) { + hash_state = absl::visit(VariantVisitor{std::move(hash_state)}, v); + } + return H::combine(std::move(hash_state), v.index()); +} +// ----------------------------------------------------------------------------- + +// hash_range_or_bytes() +// +// Mixes all values in the range [data, data+size) into the hash state. +// This overload accepts only uniquely-represented types, and hashes them by +// hashing the entire range of bytes. +template +typename std::enable_if::value, H>::type +hash_range_or_bytes(H hash_state, const T* data, size_t size) { + const auto* bytes = reinterpret_cast(data); + return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size); +} + +// hash_range_or_bytes() +template +typename std::enable_if::value, H>::type +hash_range_or_bytes(H hash_state, const T* data, size_t size) { + for (const auto end = data + size; data < end; ++data) { + hash_state = H::combine(std::move(hash_state), *data); + } + return hash_state; +} + +// InvokeHashTag +// +// InvokeHash(H, const T&) invokes the appropriate hash implementation for a +// hasher of type `H` and a value of type `T`. If `T` is not hashable, there +// will be no matching overload of InvokeHash(). +// Note: Some platforms (eg MSVC) do not support the detect idiom on +// std::hash. In those platforms the last fallback will be std::hash and +// InvokeHash() will always have a valid overload even if std::hash is not +// valid. +// +// We try the following options in order: +// * If is_uniquely_represented, hash bytes directly. +// * ADL AbslHashValue(H, const T&) call. +// * std::hash + +// In MSVC we can't probe std::hash or stdext::hash because it triggers a +// static_assert instead of failing substitution. +#if defined(_MSC_VER) +#undef ABSL_HASH_INTERNAL_CAN_POISON_ +#else // _MSC_VER +#define ABSL_HASH_INTERNAL_CAN_POISON_ 1 +#endif // _MSC_VER + +#if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \ + ABSL_HASH_INTERNAL_CAN_POISON_ +#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1 +#endif + +enum class InvokeHashTag { + kUniquelyRepresented, + kHashValue, +#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ + kLegacyHash, +#endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ + kStdHash, + kNone +}; + +// HashSelect +// +// Type trait to select the appropriate hash implementation to use. +// HashSelect::value is an instance of InvokeHashTag that indicates the best +// available hashing mechanism. +// See `Note` above about MSVC. +template +struct HashSelect { + private: + struct State : HashStateBase { + static State combine_contiguous(State hash_state, const unsigned char*, + size_t); + using State::HashStateBase::combine_contiguous; + }; + + // `Probe::value` evaluates to `V::value` if it is a valid + // expression, and `false` otherwise. + // `Probe::tag` always evaluates to `Tag`. + template