
XML in SmootLight: Configuration++

Russell Cohen

February 17, 2011

1 Motivation

Why use XML (or any non-code language for that matter) to configure code? 2 Reasons:

• We would like small changes (like changing the color, speed, or type of behavior) to be as quick as
possible, and require modifying only 1 piece of code.

• We would like these changes to be able to be made programmatically

• (Not applicable to python, but important in languages like Java or C): We want to be able to make
changes without having to recompile the source.

As you will see, however, XML in SmootLight goes beyond simple configuration. XML in SmootLight allows
us to declare a LightSystem (an inherently non-declarative thing) in the same way you might write a webpage
in HTML. We will refer to the XML system here-on-in as ‘SmootConf’. The fastest way to get familiar
with SmootConf is simply to look at the XML files in the configuration file. However, if you
want a more structured approach to its feature and subtleties this document should do the
job. Without any further ado, lets start looking at how this all works.

2 Declaring a class in SmootConf

The most common thing done is SmootConf is declaring a class – Class declaration code will get parsed by
SmootLight at runtime and actually declare your classes for you, exactly how you describe them. Classes
are declared under a broader Configuration tag which we will describe later. Lets look at the declaration
of PygameInput, an input that takes data from a Pygame window.

<InputElement>

<Class>inputs.PygameInput</Class>

<Args>

<Id>pygameclick</Id>

<RefreshInterval>10</RefreshInterval>

<Clicks>True</Clicks>

</Args>

</InputElement>

The first attribute we see is the Class attribute. This specifies what fully-qualified Python class to this
object should be an instance of. In this case, it is an instance of PygameInput, which lives in the inputs
module/folder. Next, we see the Args. The Args are where every piece of configuration (except the actual
Class) goes. Let me repeat that, becuase it is a common sticking point. If you place something in the
configuration outside of the Args tag, it will not be read. Period.

1

If you are familiar with the SmootLight system, you will know that many objects in SmootLight behave
like dictionaries – you can use statements like Self[’ParamName’] to access parameters. If you have ever
wondered where this mystery dictionary is filled from, look no further – it is here in the Args tag.

Lets dig into the contents of the Arg tag. First we see Id. All components in the SmootLight system
are not explicitly required to have an Id specified.1 However, if you want to be able to reference this class
in other places in the XML (which we will look into later), you will need to specify and Id. The other two
parameters are simply bits of configuration which will get passed to PygameInput when it gets instantiated.

3 The Structure of a SmootLight Configuration Document

The individual class declarations are the ‘leaves’ of a full configuration document that gets interpreted by
the parser. In order for the parser to know what to do with them, it also needs the branches. The structure
of these ‘branches’ (tags) follow:

<LightInstallation>

<InstallationConfiguration>

<Defaults />

</InstallationConfiguration>

<PixelConfiguration />

<PixelMapperConfiguration />

<RendererConfiguration />

<InputConfiguration />

<BehaviorConfiguration />

</LightInstallation>

Under each of the tags indicated, place the classes that you want to instantiate in that category. Each
category has a different child tag:

• PixelConfiguration: PixelStrip

• PixelMapperConfiguration: PixelMapper

• RendererConfiguration: Renderer

• InputConfiguration: InputElement

• BehaviorConfiguration: Behavior

Some further clarification on this: Recall in the previous section we inspected the declaration of the Input
element. The input configuration for that system might have looked like:

<InputConfiguration>

<InputElement>

<Class>inputs.PygameInput</Class>

<Args>

<Id>pygameclick</Id>

<RefreshInterval>10</RefreshInterval>

<Clicks>True</Clicks>

</Args>

</InputElement>

</InputConfiguration>

1Components declared without Id’s will get a randomly assigned Id at declaration time

2

InputElements live under the broader InputConfiguration tag. Thats all in terms of basic configuration
– all other features are going to be specific to the particular class you are declaring (and the class should
specify those). However, the system also offers a lot of features to give you more power and flexibility, as
well as minimizing repeated XML.

4 XML Inheritance

SmootConf allows you have XML objects inherit from this other. Think of this as an X:Include crossed with
OO style inheritance, if those are familiar concepts. The most basic tag of inheritance in SmootConf is the
InheritsFrom tag. Here is a quick example of it in action:

<Renderer Scale="4">

<InheritsFrom>renderers/Pygame.xml</InheritsFrom>

</Renderer>

And the contents of renderers/Pygame.xml:

<Renderer>

<Class>renderers.PygameRenderer</Class>

<Args>

<Id>pygamerender</Id>

<displaySize>(1300,50)</displaySize>

</Args>

</Renderer>

The InheritsFrom tag indicates to look in the XML File indicated, parse it, and recursively merge its
tags with the siblings of the InheritsFrom tag. From a high level, the algorithm works as follows:

• For every tag:

• If the tag is in the inheriter, use that. Otherwise, use the inherited tag.

• Recurse to children.

SmootConf adds a bit of syntactic sugar that allows you override args in the args dict when doing
inheritance by simply specifying them as attributes of the parent. The example below comes from a pixel
layout config:

<PixelConfiguration>

<PixelStrip Id="strip1.1" originLocation="(0,0)" Reverse="True">

<InheritsFrom>layouts/50PixelStrip.xml</InheritsFrom>

</PixelStrip>

<PixelStrip Id="strip1.2" originLocation="(200,0)">

<InheritsFrom>layouts/50PixelStrip.xml</InheritsFrom>

</PixelStrip>

The contents of layouts/50PixelStrip.xml are:

<PixelStrip>

<Class>layouts.LineLayout</Class>

<Args>

<pixelToPixelSpacing>4</pixelToPixelSpacing>

3

<spacing>4</spacing>

<numPixels>50</numPixels>

</Args>

</PixelStrip>

A careful reading of the algorithm will reveal some behaviors which are not specified. What if there are
multiple instances of identical sibling tags? The answer is that this is not currently supported. It may be
supported in the future.

If you want your tags to be added to an inherited config without trying to merge, put them in an APPEND

tag like so:

<Behaviors>

<InheritsFrom>behaviors/StockBehaviors.xml</InheritsFrom>

<APPEND>

<Beavhior>

<InheritsFrom>behaviors/SomethingElse.xml</InerhitsFrom>

</Behavior>

<Behavior>

<Class>blah.blah</Class>

<Args>

</Args>

</Behavior>

</APPEND>

</Behaviors>

5 Variable Bindings

SmootConf allows developers to reference other variables within the <Args> tag. These references are
dynamic, and are bound for the lifetime of the object and will updated as their bound values update. Here
is an example:

<Behavior>

<Class>behaviors.SomeClass</Class>

<Args>

<Id>dimming</Id>

<DecayCoefficient>${DecayTime}$*5</DecayCoefficient>

<DecayTime>10</DecayTime>

</Args>

</Behavior>

In this (fake) example, we bind the DecayCoefficient to the value of DecayTime, which allows us to set decay
in a reasonable unit, decoupled from the coefficient required by the behavior itself.

Under the hood, this feature is done with lambda functions. When you query arguments on the object,
the lambda gets resolved (look at operationscore/SmootCoreObject.py for the implementation of this).
Because of this, we also have to ability to go 1 layer deeper.

Let’s say you wanted to operate on another dictionary – say, the current behavior packet or and args
of another behavior. By surrounding your variable in quotes, querying its value with product a lambda
function, which, when given another dictionary, will resolve the value.

4

<Behavior>

<Class>behaviors.SomeClass</Class>

<Args>

<Id>stayinbounds</Id>

<MaxX>100</MaxX>

<OutOfBounds>’${x}$’ < ${MaxX}$</OutOfBounds>

</Args>

</Behavior>

If you call self[’OutOfBounds’], and pass it a dictionary with a value at key x, it will return a boolean
stating whether or not x > MaxX.

5

