%% 18.022 cheat sheet %% %% Copyright (C) 2009, 2010, 2011 Benjamin Barenblat %% http://benjamin.barenblat.name/ %% %% This document is licensed under the Creative Commons %% Attribution-NonCommercial-ShareAlike 3.0 United States License. %% For more information, see %% http://creativecommons.org/licenses/by-nc-sa/3.0/us/. %% %% This document is designed to be typeset with pdfLaTeX. \documentclass[10pt,landscape]{article} \usepackage{eco} \usepackage{geometry} \usepackage{multicol} \usepackage{mathtools} \usepackage{color} \usepackage[colorlinks]{hyperref} \definecolor{darkred}{rgb}{0.5,0,0} \hypersetup{colorlinks,linkcolor=black,urlcolor=darkred} \usepackage{graphicx} \usepackage{wrapfig} \usepackage{18.022} \usepackage{esint} \usepackage{titlesec} % Only show equation numbers of referenced equations. \mathtoolsset{showonlyrefs=true} % Set margin. \geometry{margin=6mm} % Turn off header and footer. \pagestyle{empty} % Don't print subsection numbers. \setcounter{secnumdepth}{0} %% Squash paragraph headings. \titlespacing*{\paragraph}{0pt}{.94em}{*1} \setlength{\parindent}{0pt} \setlength{\parskip}{0pt} \makeatletter \newcommand{\@recitation}{} \newcommand{\recitation}[1]{\renewcommand{\@recitation}{#1}} \renewcommand{\maketitle}{% \begin{center} \LARGE{\textbf{\@title}} \end{center} } \newcommand{\makeend}{% \vfill \rule{0.3\linewidth}{0.25pt} \scriptsize \begin{tabular}{@{}l} Copyright \copyright\ \@date\ \@author. \href{http://creativecommons.org/licenses/by-nc-sa/3.0/us/}{\textsc{cc by$\cdot$nc$\cdot$sa}}. No warranty.\\ \url{http://benjamin.barenblat.name/} \end{tabular} } \makeatother \title{18.022 Cheat Sheet} \author{Benjamin Barenblat} \date{2009--2011} \begin{document} \raggedright \begin{multicols*}{3} \maketitle \section{Vectors} \paragraph{Dot product} Let $\vec v, \vec w, \vec u \in \R^n$. Then, $\vec v \dot \vec w = \langle \vec v, \vec w \rangle = \langle\vec v \vert \vec w\rangle = \bra v_1w_1 & \cdots & v_nw_n \ket$. \paragraph{Cauchy-Schwarz inequality} Let $\vec v, \vec w \in \R^n$. Then, $(\vec v \dot \vec w)^2 \le (\vec v \dot \vec v)(\vec w \dot \vec w) \iff \abs{\vec v \dot \vec w} \le \norm{\vec v}\norm{\vec w}$. \paragraph{Triangle inequality} Let $\vec v, \vec w \in \R^n$. Then, $\norm{\vec v + \vec w} \le \norm{\vec x} + \norm{\vec y}$ and $\norm{\vec v - \vec w} \ge \big\lvert\norm{\vec v} - \norm{\vec w}\big\rvert$. \paragraph{Projection} For $\vec a, \vec b \in \R^n$, the projection of $\vec b$ onto $\vec a$ \begin{equation} \label{eq:projection} \proj_{\vec a}\vec b = \frac{\vec a \dot \vec b}{\norm{\vec a}}\vec{\hat a} = \frac{\vec a \dot \vec b}{\norm{\vec a}^2}\vec a = \frac{\vec a \dot \vec b}{\vec a \dot \vec a}\vec a \end{equation} and $\norm{\proj_{\vec a}\vec b} = \norm{\vec b\cos\theta}$. \paragraph{Distance from a point to a line} Given a point $\vec p$ and a line $\vec l(t) = \vec vt + \vec q$, the shortest vector from $\vec p$ to $\vec l$ is \begin{equation} \vec q - \vec p - \proj_{\vec v}(\vec q - \vec p) = \vec q - \vec p - \frac{(\vec q - \vec p) \dot \vec v}{\norm{\vec q - \vec p}^2}\vec v. \end{equation} \paragraph{Cross product} Let $\vec v, \vec w \in \R^3$. Then, \begin{equation} \label{eq:crossproduct} \vec v \cross \vec w = \bra v_1 \\ v_2 \\ v_3 \ket \cross \bra w_1 \\ w_2 \\ w_3 \ket = \bra v_2w_3 - v_3w_2 \\ v_3w_1 - v_1w_3 \\ v_1w_2 - v_2w_1 \ket \end{equation} and $\norm{\vec v \cross \vec w} = \norm{\vec v}\norm{\vec w}\abs{\sin\theta}$. \paragraph{Planes} Let $\vec x = \bra x_1 & \cdots & x_n \ket \in \R^n$. For a point $\vec p$ and normal vector $\vec n$, $(\vec x - \vec p) \dot \vec n = 0$. \begin{list}{\textbullet}{\setlength{\itemsep}{0pt}} \item Point and two vectors: $\vec n = \vec u \cross \vec v$. \item Three points: $\vec n = (\vec q - \vec p) \cross (\vec r - \vec p) = 0$. \item Function and point: $\vec n = \grad f(\vec p)$. \end{list} \paragraph{Triple scalar product / determinant} For $\vec u, \vec v, \vec w \in \R^3$, \begin{equation} \vec u \dot \vec v \cross \vec w = \det \bra \vec u & \vec v & \vec w \ket \end{equation} is the volume of the parallelepiped spanned by $\vec u$, $\vec v$, and $\vec w$. $(\vec u, \vec v, \vec w)$ is right-handed iff $\det \bra \vec u & \vec v & \vec w \ket > 0$. \paragraph{Matrix Multiplication} Dimensionally, the number of columns in the first matrix must match the number of rows in the second. \begin{wrapfigure}[5]{r}{1.4in} \includegraphics[width=1.4in]{matrix-multiplication} \scriptsize Copyright \textcopyright\ 2009 \href{http://en.wikipedia.org/wiki/User:Fangfufu}{Fangfufu}.\\\textsc{\href{http://creativecommons.org/licenses/by-sa/3.0/}{cc by$\cdot$sa}}. \end{wrapfigure} \begin{multline} \bra a & b & c \\ d & e & f \\ g & h & i \ket \bra \alpha & \delta \\ \beta & \epsilon \\ \gamma & \zeta \ket = \\ \bra a\alpha + b\beta + c\gamma & a\delta + b\epsilon + c\zeta \\ d\alpha + e\beta + f\gamma & d\delta + e\epsilon + f\zeta \\ g\alpha + h\beta + i\gamma & g\delta + h\epsilon + i\zeta\ket \end{multline} $a_{1,2}$ refers to the element in the $1$st row, $2$nd column. Generally, for two matrices $A$ and $B$, \begin{equation} (AB)_{i,j} = A_{i,1} + B_{1,j} + A_{i,2}B{2,j} + \cdots + A_{i,n}B_{n,j}. \end{equation} \section{Differential calculus} \paragraph{Gradient} For a scalar field $f : \R^n \to \R$, the gradient of $f$ \begin{equation} \grad f = \bra D_1f \\ D_2f \\ D_3f \\ \vdots \\ D_nf \ket, \end{equation} a new vector field which consistently points in the direction of $f$'s greatest increase with magnitude equal to the rate of that increase. By corollary, $\grad f$ is always perpendicular to $f$'s level curves. \paragraph{Divergence} For a vector field $\vec F : \R^n \to \R^n$, the divergence of $\vec F$ \begin{equation} \div\vec F = D_1F_1 + D_2F_2 + D_3F_3 + \cdots + D_nF_n, \end{equation} a new scalar field. Positive values of $\div\vec F$ indicate field sources, while negative values indicate field sinks. \paragraph{Curl} For a vector field $\vec F : \R^3 \to \R^3$, the curl of $\vec F$ \begin{equation} \curl\vec F = \bra D_2F_3 - D_3F_2 \\ D_3F_1 - D_1F_3 \\ D_1F_2 - D_2F_1 \ket, \end{equation} a new vector field measuring the rate of rotation at each point. \paragraph{Laplacian} For a scalar field $f : \R^n \to \R$, the Laplacian of $f$ \begin{equation} \nabla^2 f = \div\grad f = D_1^2f + D_2^2f + D_3^2f + \cdots + D_n^2f. \end{equation} \paragraph{Conservative vector fields} Let $\vec F : U \subseteq \R^n \to \R^n$ ($U$ open) be a vector field of class $C^1$. If there exists a class $C^2$ scalar field $f : U \to \R$ such that $\vec F = \grad f$ on $U$, then $\vec F$ is conservative on $U$. If $\vec F$ is conservative on $U$, then $\vec F$ is also curl-free on $U$. (The converses are true if $U$ is simply connected.) \paragraph{Chain rule} If $\vec f : \R^n \to \R^m$ is differentiable at $\vec x$ and $\vec g : \R^m \to \R^p$ is differentiable at $\vec f(\vec x)$, then $\vec g \circ \vec f$ is differentiable at $\vec x$ and \begin{equation} \label{eq:chainrule} D(\vec g \circ \vec f)_{\vec x} = \big(D\vec g_{\vec f(\vec x)}\big)(D\vec f_{\vec x}). \end{equation} \paragraph{Implicit function theorem} Let $\vec F : \R^{n+m} \to \R^m$ (i.e., $m$ functions in $n + m$ unknowns) be of class $C^1$ and let $\vec F(\vec x_0) = \0$ for some $\vec x_0 \in \R^{n+m}$. Write $\vec x = (\vec a, \vec b)$, where $\vec a \in \R^n$ and $\vec b \in \R^m$; write $\vec x_0 = (\vec a_0, \vec b_0)$, where $\vec a_0 \in \R^n$ and $\vec b_0 \in \R^m$. Note that $D\vec F = \bra D_{\vec a}\vec F & D_{\vec b}\vec F \ket$. If $D_{\vec b}\vec F(\vec b_0)$ is invertible (i.e., $\det D_{\vec b}\vec F(\vec b_0) \ne 0$), then there exists a neighborhood $U$ of $\vec a_0$ in $\R^n$ and a neighborhood $V$ of $\vec b_0$ in $\R^m$ and a function $\vec f : U \to V$ such that $F\big(\vec a_0, f(\vec a_0)\big) = 0$. $\vec f$ expresses $\vec b$ in terms of $\vec a$ in the neighborhood of $(\vec a_0, \vec b_0)$, and \begin{equation} \label{eq:implicitdiff} D\vec f_{\vec a_0} = -\big(D_{\vec b}\vec F(\vec b_0)\big)^{-1}\big(D_{\vec a}\vec F(\vec a_0)\big). \end{equation} \paragraph{Taylor's theorem} The $k$th-order Taylor polynomial of a class $C^k$ function $f : \R^2 \to \R$ at $\vec x \in \R^2$ near a point $\vec a \in \R^2$ \begin{equation} T^kf_{\vec a}(\vec x - \vec a) = \sum_{\substack{n,m\\n+m \le k}} \frac{D_1^nD_2^m f(a_1,a_2)}{n!m!}(x - a_1)^n(y - a_2)^m. \end{equation} \paragraph{Extrema} Consider a function $f : \R^n \to \R$ of class $C^2$. $f$ has critical points where $Df = \0$; if $f$ has local extrema, they will occur at critical points. At each critical point, \begin{itemize} \item If $D^2f$'s minors are all positive, $D^2f$ is positive definite and the point is a local minimum. \item If $-D^2f$'s minors are all positive, $D^2f$ is negative definite and the point is a local maximum. \item If neither of these are true, but $D^2f$ is invertible, $D^2f$ is indefinite and the point is a saddle point. \item If $D^2f$ is not invertible, then the point is degenerate. \end{itemize} If a function $f : K \to \R$ is of class $C^1$ on $K$ and continuous on the interior of $\partial K$ and $K$ is closed and bounded, then $f$ has at least one minimum and at least one maximum on $K$. The extrema will occur inside $K$ at critical points or somewhere on $\partial K$. \paragraph{Constrained optimization (one constraint)} Consider a differentiable function $f : \R^n \to \R$ on a set $\mathscr{C} \subseteq \R$ defined as the level set of some function -- i.e., for some $C^1$ function $g$, $\mathscr{C} = \{ \vec x \in \R^n : g(\vec x) = 0 \}$. Define $L(\vec x, \lambda) = f(\vec x) - \lambda g(\vec x)$. If, at a point $\vec x_0$, $\grad L(\vec x_0, \lambda_0) = 0$ for some constant $\lambda_0$ and $\grad g(\vec x_0) \ne 0$, then $f\vert_\mathscr{C}$ has a critical point at $\vec x_0$. \paragraph{Constrained optimization ($k$ constraints)} Consider a differentiable function $f : \R^n \to \R$ on a set $\mathscr{C} \subseteq \R$ defined as the level set of some family of functions -- i.e., for some $C^1$ function $\vec g = \bra g_1 & g_2 & \cdots & g_n \ket$, $\mathscr{C} = \{ \vec x \in \R^n : \vec g(\vec x) = \0 \}$. Define $L(\vec x, \boldsymbol\lambda) = f(\vec x) - \boldsymbol\lambda \dot \vec g(\vec x)$. If, at a point $\vec x_0$, $\grad L(\vec x_0, \boldsymbol\lambda_0) = 0$ for some constant $\boldsymbol\lambda_0$ and $\bra \grad g_1(\vec x_0) & \cdots & \grad g_k(\vec x_0) \ket$ has a $k\times k$ submatrix that is invertible, then $f\vert_\mathscr{C}$ has a critical point at $\vec x_0$. \section{Integral calculus} \paragraph{Double integrals} Let $f : \R^2 \to \R$ be Riemann integrable on some nice domain $D \subseteq \R^2$. Define $a, b, c, d \in \R$ such that $[a,b] \times [c,d]$ is $D$'s bounding box. Now define $f$'s extension \begin{equation} f^{\text{ext}}(x,y,z) = \begin{cases} f(x,y) & \text{if $(x,y) \in D$},\\ 0 & \text{otherwise}. \end{cases} \end{equation} Then, \begin{equation} \iint_D f(x,y) dxdy = \int_a^b \int_c^d f^{\text{ext}}(x,y) dydx. \end{equation} In practice, \begin{equation} \iint_D f(x,y) dxdy = \int_a^b \int_{g(x)}^{h(x)} f^{\text{ext}}(x,y) dydx \end{equation}j for some functions $g$ and $h$. \paragraph{Triple integrals} Let $f : \R^3 \to \R$ be Riemann integrable on some nice domain $D \subseteq \R^3$. Define $a, b, c, d, e, f \in \R$ such that $[a,b] \times [c,d] \times [e,f]$ is $D$'s bounding box. Now define $f$'s extension \begin{equation} f^{\text{ext}}(x,y,z) = \begin{cases} f(x,y,z) & \text{if $(x,y,z) \in D$},\\ 0 & \text{otherwise}. \end{cases} \end{equation} Then, \begin{equation} \iiint_D f(x,y,z) dxdydz = \int_a^b \int_c^d \int_e^f f^{\text{ext}}(x,y,z) dzdydx. \end{equation} In practice, \begin{multline} \iiint_D f(x,y,z) dxdydz\\ = \int_a^b \int_{g(x)}^{h(x)} \int_{p(x,y)}^{q(x,y)} f^{\text{ext}}(x,y,z) dzdydx \end{multline} for some functions $g$, $h$, $p$, and $q$. \paragraph{Change of variables} Let $f : D \subset \R^n \to \R$ be Riemann integrable on some nasty domain $D$ and let $\boldsymbol\Phi : D^* \subset \R^n \to D$ be such that $\boldsymbol\Phi$ is of class $C^1$, $\boldsymbol\Phi$ is one-to-one, $\boldsymbol\Phi$ is invertible on its domain (i.e., $\det D\boldsymbol\Phi_{\vec u} \ne 0$ for all $\vec u \in D^*$), and $\boldsymbol\Phi(D^*) = D$. Then, \begin{equation} \int_D f(\vec x) d\vec x = \int_{D^*} f\big(\boldsymbol\Phi(\vec u)\big)\abs{\det D\boldsymbol\Phi_{\vec u}} d\vec u. \end{equation} For well-known coordinate systems, $dxdy = rdrd\theta$; $dxdydz = \rho^2\sin\phi d\rho d\phi d\theta = rdrd\theta dz$. \paragraph{Scalar line integrals} Let $\vec x(t) : \R \to \R^n$ parametrize a curve $C$ in $\R^n$ with endpoints $\vec x(a)$ and $\vec x(b)$; let $f(\vec x) : \R^n \to \R$ be a function defined on $C$. Then, \begin{equation} \int_C fds = \int_a^b f\big(\vec x(t)\big) \norm{\vec{\flux x}(t)} dt. \end{equation} \paragraph{Vector line integrals} Let $\vec x(t) : \R \to \R^n$ parametrize a curve $C$ in $\R^n$ with endpoints $\vec x(a)$ and $\vec x(b)$; let $\vec F(\vec x) : \R^n \to \R^m$ be a vector field defined on $C$. Then, \begin{equation} \int_C \vec F \dot d\vec s = \int_a^b \vec F\big(\vec x(t)\big) \dot \vec{\flux x}(t) dt. \end{equation} \paragraph{Scalar surface integrals} Let $\vec X(u,v) : \R^2 \to \R^n$ be a piecewise smooth parametrization of a surface $\mathscr{S}$ in $\R^n$ such that $\vec X(D) = \mathscr{S}$; let $f(\vec X) : \R^n \to \R$ be a function defined on $\mathscr{S}$. Then, \begin{equation} \iint_\mathscr{S} fdS = \iint_D f\big(\vec X(u,v)\big) \norm{\frac{\partial\vec X}{\partial u} \cross \frac{\partial\vec X}{\partial v}} dudv. \end{equation} \paragraph{Vector surface integrals} Let $\vec X(u,v) : \R^2 \to \R^n$ be a piecewise smooth parametrization of a surface $\mathscr{S}$ in $\R^n$ such that $\vec X(D) = \mathscr{S}$; let $\vec F(\vec X) : \R^n \to \R^m$ be a vector field defined on $\mathscr{S}$. Then, \begin{equation} \iint_\mathscr{S} \vec F \dot d\vec S = \iint_D \vec F\big(\vec X(u,v)\big) \dot \frac{\partial\vec X}{\partial u} \cross \frac{\partial\vec X}{\partial v} dudv. \end{equation} The first member of this definition, $\iint_\mathscr{S} \vec F \dot d\vec S$, is also called the flux of $\vec F$ through $\mathscr{S}$. \section{Fundamental theorems} \paragraph{The first fundamental theorem of calculus} If $f : \R^n \to \R$ is of class $C^1$ and $C$ is a smooth curve in $\R^n$ with endpoints $\vec x_0$ and $\vec x_1$, then \begin{equation} \int_C \grad f \dot d\vec s = f(\vec x_1) - f(\vec x_0). \end{equation} \paragraph{Green's theorem} Let $D$ be a closed set in $\R^2$ such that $\partial D$ is a collection of closed curves oriented such that $D$ is to the left. If $\vec F: D \to \R^2$ is of class $C^1$, then \begin{equation} \oint_{\partial D} \vec F \dot d\vec s = \iint_D \curl \vec F \dot \vec k dxdy. \end{equation} This is a special case of Stokes' theorem. \paragraph{Gauss's theorem (the second fundamental theorem of calculus)} Let $\Omega \in \R^3$ be a closed domain whose boundary is a piecewise smooth surface $\partial\Omega$. Give $\partial\Omega$ outward-pointing orientation. If $\vec F$ is a $C^1$ vector field in $\Omega$, then \begin{equation} \oiint_{\partial\Omega} \vec F \dot d\vec S = \iiint_\Omega \div\vec F dxdydz. \end{equation} \paragraph{Stokes' theorem (the third fundamental theorem of calculus)} Let $\mathscr{S}$ be a piecewise smooth surface in $\R^3$ with a given continuous normal vector field $\vec N$. Let $\partial\mathscr{S}$ be a collection of piecewise smooth curves. Orient the curves such that the outside of the surface is to the left. Now let $\vec F : \mathscr{S} \to \R$ be a $C^1$ vector field. Then, \begin{equation} \oint_{\partial\mathscr{S}} \vec F \dot d\vec s = \iint_\mathscr{S} \curl \vec F \dot d\vec S. \end{equation} \makeend \end{multicols*} \end{document}